奇函数加偶函数是非奇非偶函数。设f(x)为偶函数,g(x)是奇函数令F(x)=f(x)+g(x)F(-x)=f(-x)+g(-x)=f(x)-g(x)≠f(x)+g(x)=F(x)也≠-[f(x)+g(x)]=-F(x)即非奇非偶函数。
相关介绍
奇函数加偶函数的奇偶性
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。
举例说明:f(x)=x,g(x)=x的平方,h(x)=x+x的平方,h(–x)=–x+x的平方,可以看出h(x)为非奇非偶函数。
奇函数减偶函数的奇偶性
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)-g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)-g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)-g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)+g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。
举例说明:f(x)=x,g(x)=x的平方,h(x)=x-x的平方,h(–x)=–x-x的平方,可以看出h(x)为非奇非偶函数。
猜你喜欢
- 2024-12-9玉米的英文单词是什么
- 2024-12-9treasure表示珠宝可数吗
- 2024-12-9裤子的单词英语怎么写
- 2024-12-9安徽本科军校有哪些学校
- 2024-12-9suggest和advise可数吗
- 2024-12-9英国伦敦有哪些大学排名
- 2024-12-9昨天晚上的英文单词怎么写
- 2024-12-9他们正在跳舞的英文怎么写
- 2024-12-9黄河科技学院是二本还是三本
- 2024-12-9funny可数吗?
网友评论
- 搜索
- 最新文章
- 热门文章
