上海古都建筑设计集团,上海办公室装修设计公司,上海装修公司高质量的内容分享社区,上海装修公司我们不是内容生产者,我们只是上海办公室装修设计公司内容的搬运工平台

Flink高手之路2-Flink集群的搭建

guduadmin11天前

文章目录

  • Flink高手之路2-Flink集群的搭建
    • 一、Flink的安装模式
      • 1.本地local模式
      • 2.独立集群模式standalone
      • 3.高可用的独立集群模式standalone HA
      • 4.基于yarn模式Flink on yarn
      • 二、基础环境
      • 三、Flink的local模式安装
        • 1. 下载安装包
        • 2. 上传服务器
        • 3.解压
        • 4. 配置环境变量
        • 5. 使环境变量起作用
        • 6.测试显示版本
        • 7.测试scala shell交互命令行(可跳过)
          • 1)安装一下 Flink 1.12 版本
          • 2)启动命令行
          • 3)web ui查看
          • 4)scala命令行示例-单词计数(批处理)
          • 5)scala命令行示例2-窗口计数(流处理)
          • 6)退出命令行
          • 8.local模式测试
          • 9.查看Flink的web ui
          • 10.local集群运行测试任务-单词计数
            • 1)先准备好数据文件
            • 2)找到单词计数的jar包
            • 3)提交任务到集群上运行
            • 4)web ui任务执行过程查看
            • 11.Flink本地(local)模式任务执行的原理
            • 四、Flink的独立集群Standalone模式的安装及测试
              • 1.集群规划
              • 2.下载安装包并上传服务器解压
              • 3.配置环境变量并使环境变量起作用
              • 4.修改Flink的配置文件
                • 1)修改yaml或者yml文件的注意事项
                • 2)修改flink-conf.yaml
                • 3)master
                • 4)workers
                • 5.分发文件
                  • 1)分发flink
                  • 2)分发/etc/profile
                  • 3)使得配置文件起作用
                  • 6.启动Flink集群,并查看相关进程
                  • 7.web ui查看
                  • 8.集群测试
                    • 1)提交单词计数的任务,使用默认的参数
                    • 2)提交单词计数的任务,使用自定义参数
                    • 3)添加hadoop classpath配置
                    • 4)分发并激活环境变量
                    • 5)下载flink和hadoop的连接工具,上传到flink的lib文件夹
                    • 6)重新启动flink集群
                    • 7)重新提交单词计数的任务,使用自定义参数
                    • 9.工作原理
                    • 五、独立集群高可用Standalone-HA搭建
                      • 1.集群规划
                      • 2.修改flink的配置文件
                        • 1)修改flink-conf.yaml文件
                        • 2)修改masters文件
                        • 3)不用修改workers文件
                        • 3.同步配置文件
                        • 4.修改hadoop002上的flink-conf.yaml文件
                        • 5.启动集群
                          • 1)启动zookeeper
                          • 2)启动hdfs
                          • 3)启动yarn
                          • 4)启动flink集群
                          • 6.flink的web ui查看
                          • 7.集群的测试
                            • 1)单词计数使用默认的参数
                            • 2)杀掉hadoop001的master进程
                            • 3)再次提交单词计数的任务(使用默认参数)
                            • 4)接着杀掉hadoop002的master
                            • 5)单词计数,使用自定义参数
                            • 8.工作原理
                            • 六、Flink on Yarn模式集群搭建及测试
                              • 1.为什么要使用Flink on Yarn
                              • 2.集群规划
                              • 3.修改yarn的配置
                              • 4.启动相关的服务
                              • 5.flink on yarn提交任务的模式
                              • 6.Session模式提交任务
                                • 1)开启会话(session)
                                • 2)提交任务-单词计数
                                • 3)再次提交任务
                                • 7.关闭yarn-session
                                • 8.Per-Job模式提交任务
                                  • 1)语法
                                  • 2)提交任务
                                  • 3)查看yarn的web ui
                                  • 4)再次提交任务
                                  • 5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭
                                  • 9.flink任务提交参数总结

                                    Flink高手之路2-Flink集群的搭建,第1张

                                    Flink高手之路2-Flink集群的搭建

                                    一、Flink的安装模式

                                    1.本地local模式

                                    本地单机模式,一般用于测试环境是否搭建成功,很少使用

                                    2.独立集群模式standalone

                                    Flink自带集群,开发测试使用

                                    3.高可用的独立集群模式standalone HA

                                    Flink自带集群,用于开发测试

                                    4.基于yarn模式Flink on yarn

                                    计算资源统一交给hadoop的yarn进行管理,用于生产环境

                                    二、基础环境

                                    • 虚拟机
                                    • jdk1.8
                                    • ssh免密登录

                                      三、Flink的local模式安装

                                      1. 下载安装包

                                      Flink高手之路2-Flink集群的搭建,image-20230223095958681,第2张

                                      点击:

                                      Flink高手之路2-Flink集群的搭建,image-20230223100026371,第3张

                                      点击下载:

                                      Flink高手之路2-Flink集群的搭建,image-20230223100136780,第4张

                                      2. 上传服务器

                                      找到安装包,并上传:

                                      Flink高手之路2-Flink集群的搭建,image-20230223100343969,第5张

                                      上传成功:

                                      Flink高手之路2-Flink集群的搭建,image-20230223100531282,第6张

                                      3.解压

                                      tar xzvf flink-1.16.1-bin-scala_2.12.tgz -C /export/servers/
                                      

                                      Flink高手之路2-Flink集群的搭建,image-20230223100705880,第7张

                                      进入 Servers 目录下:

                                      Flink高手之路2-Flink集群的搭建,image-20230224204513745,第8张

                                      进入 Flink 目录下:

                                      Flink高手之路2-Flink集群的搭建,image-20230224204623616,第9张

                                      进入 bin 目录下:

                                      Flink高手之路2-Flink集群的搭建,image-20230223101144313,第10张

                                      4. 配置环境变量

                                      Flink高手之路2-Flink集群的搭建,image-20230223102504529,第11张

                                      5. 使环境变量起作用

                                      Flink高手之路2-Flink集群的搭建,image-20230223102117785,第12张

                                      6.测试显示版本

                                      Flink高手之路2-Flink集群的搭建,image-20230224204825795,第13张

                                      7.测试scala shell交互命令行(可跳过)

                                      需要flink的版本是1.12及以下的版本,在高版本中 scala shell 被舍去了。

                                      1)安装一下 Flink 1.12 版本

                                      上传文件

                                      Flink高手之路2-Flink集群的搭建,image-20230302110343556,第14张

                                      上传成功:

                                      Flink高手之路2-Flink集群的搭建,image-20230302110658449,第15张

                                      解压

                                      Flink高手之路2-Flink集群的搭建,image-20230302110812013,第16张

                                      Flink高手之路2-Flink集群的搭建,image-20230302110837427,第17张

                                      2)启动命令行

                                      启动 shell

                                      bin/start-scala-shell.sh local
                                      

                                      Flink高手之路2-Flink集群的搭建,image-20230302145653033,第18张

                                      Flink高手之路2-Flink集群的搭建,image-20230302145940827,第19张

                                      3)web ui查看

                                      Flink高手之路2-Flink集群的搭建,image-20230302150154151,第20张

                                      4)scala命令行示例-单词计数(批处理)
                                      • 准备好数据文件

                                        Flink高手之路2-Flink集群的搭建,image-20230302150406555,第21张

                                        benv.readTextFile("/root/a.txt").flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1).print()
                                        

                                        Flink高手之路2-Flink集群的搭建,image-20230302151135163,第22张

                                        5)scala命令行示例2-窗口计数(流处理)

                                        Flink高手之路2-Flink集群的搭建,image-20230302151646765,第23张

                                        6)退出命令行

                                        输入 :quit 或者 Ctrl + d

                                        Flink高手之路2-Flink集群的搭建,image-20230302151805860,第24张

                                        8.local模式测试

                                        启动集群并查看进程

                                        Flink高手之路2-Flink集群的搭建,image-20230224205107287,第25张

                                        9.查看Flink的web ui

                                        启动失败,需要修改/etc/hosts文件,添加localhost的定义

                                        Flink高手之路2-Flink集群的搭建,image-20230302152003815,第26张

                                        若直接添加 192.168.92.128 localhost在启动 Hbase时会出现如下错误

                                        Flink高手之路2-Flink集群的搭建,image-20230302152424367,第27张

                                        修改完成后,启动成功:

                                        Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第28张

                                        10.local集群运行测试任务-单词计数

                                        1)先准备好数据文件

                                        Flink高手之路2-Flink集群的搭建,image-20230302152610056,第29张

                                        2)找到单词计数的jar包

                                        Flink高手之路2-Flink集群的搭建,image-20230302152748277,第30张

                                        3)提交任务到集群上运行

                                        出现错误:org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: java.util.concurrent.ExecutionException: org.apache.flink.runtime.client.JobSubmissionException: Failed to submit JobGraph.

                                        原因:没有启动Flink集群

                                        启动集群:

                                        Flink高手之路2-Flink集群的搭建,image-20230302153651124,第31张

                                        运行成功:

                                        Flink高手之路2-Flink集群的搭建,image-20230302173903844,第32张

                                        执行成功后,在/root目录下出现 output 目录

                                        Flink高手之路2-Flink集群的搭建,image-20230302153823381,第33张

                                        运行结果

                                        Flink高手之路2-Flink集群的搭建,image-20230302173042887,第34张

                                        4)web ui任务执行过程查看

                                        Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第35张

                                        点击任务

                                        Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第36张

                                        11.Flink本地(local)模式任务执行的原理

                                        Flink程序提交任务到 JobClient ,JobClient 提交任务到 JobManager【Master】,JobManager 分发任务给TaskManager,TaskManager执行任务,执行任务后发送状态给 JobManager,JobManager 将结果返回到 JobClient 。

                                        Flink高手之路2-Flink集群的搭建,第37张

                                        四、Flink的独立集群Standalone模式的安装及测试

                                        1.集群规划

                                        服务器JobManagerTaskManager
                                        hadoop001
                                        hadoop002
                                        hadoop003

                                        2.下载安装包并上传服务器解压

                                        同上

                                        3.配置环境变量并使环境变量起作用

                                        同上

                                        4.修改Flink的配置文件

                                        Flink高手之路2-Flink集群的搭建,image-20230302181334266,第38张

                                        1)修改yaml或者yml文件的注意事项
                                        • 不同的等级用冒号隔开,同时缩进格式
                                        • 次等级的前面是空格,不能使用制表符
                                        • 冒号之后如果有值,那么冒号与值之间用至少一个空格分隔,不能紧贴在一起

                                          Flink高手之路2-Flink集群的搭建,img,第39张

                                          2)修改flink-conf.yaml
                                          • flink1.16版本的配置
                                            ################################################################################
                                            #  Licensed to the Apache Software Foundation (ASF) under one
                                            #  or more contributor license agreements.  See the NOTICE file
                                            #  distributed with this work for additional information
                                            #  regarding copyright ownership.  The ASF licenses this file
                                            #  to you under the Apache License, Version 2.0 (the
                                            #  "License"); you may not use this file except in compliance
                                            #  with the License.  You may obtain a copy of the License at
                                            #
                                            #      http://www.apache.org/licenses/LICENSE-2.0
                                            #
                                            #  Unless required by applicable law or agreed to in writing, software
                                            #  distributed under the License is distributed on an "AS IS" BASIS,
                                            #  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
                                            #  See the License for the specific language governing permissions and
                                            # limitations under the License.
                                            ################################################################################
                                            #==============================================================================
                                            # Common
                                            #==============================================================================
                                            # The external address of the host on which the JobManager runs and can be
                                            # reached by the TaskManagers and any clients which want to connect. This setting
                                            # is only used in Standalone mode and may be overwritten on the JobManager side
                                            # by specifying the --host  parameter of the bin/jobmanager.sh executable.
                                            # In high availability mode, if you use the bin/start-cluster.sh script and setup
                                            # the conf/masters file, this will be taken care of automatically. Yarn
                                            # automatically configure the host name based on the hostname of the node where the
                                            # JobManager runs.
                                            jobmanager.rpc.address: hadoop001
                                            # The RPC port where the JobManager is reachable.
                                            jobmanager.rpc.port: 6123
                                            # The host interface the JobManager will bind to. By default, this is localhost, and will prevent
                                            # the JobManager from communicating outside the machine/container it is running on.
                                            # On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.
                                            # On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.
                                            #
                                            # To enable this, set the bind-host address to one that has access to an outside facing network
                                            # interface, such as 0.0.0.0.
                                            jobmanager.bind-host: 0.0.0.0
                                            # The total process memory size for the JobManager.
                                            #
                                            # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead.
                                            jobmanager.memory.process.size: 1600m
                                            # The host interface the TaskManager will bind to. By default, this is localhost, and will prevent
                                            # the TaskManager from communicating outside the machine/container it is running on.
                                            # On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0.
                                            # On Kubernetes this setting will be ignored, defaulting to 0.0.0.0.
                                            #
                                            # To enable this, set the bind-host address to one that has access to an outside facing network
                                            # interface, such as 0.0.0.0.
                                            taskmanager.bind-host: 0.0.0.0
                                            # The address of the host on which the TaskManager runs and can be reached by the JobManager and
                                            # other TaskManagers. If not specified, the TaskManager will try different strategies to identify
                                            # the address.
                                            #
                                            # Note this address needs to be reachable by the JobManager and forward traffic to one of
                                            # the interfaces the TaskManager is bound to (see 'taskmanager.bind-host').
                                            #
                                            # Note also that unless all TaskManagers are running on the same machine, this address needs to be
                                            # configured separately for each TaskManager.
                                            taskmanager.host: hadoop001
                                            # The total process memory size for the TaskManager.
                                            #
                                            # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.
                                            taskmanager.memory.process.size: 1728m
                                            # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.
                                            # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.
                                            #
                                            # taskmanager.memory.flink.size: 1280m
                                            # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.
                                            taskmanager.numberOfTaskSlots: 2
                                            # The parallelism used for programs that did not specify and other parallelism.
                                            parallelism.default: 2
                                            # The default file system scheme and authority.
                                            # 
                                            # By default file paths without scheme are interpreted relative to the local
                                            # root file system 'file:///'. Use this to override the default and interpret
                                            # relative paths relative to a different file system,
                                            # for example 'hdfs://mynamenode:12345'
                                            #
                                            # fs.default-scheme
                                            #==============================================================================
                                            # High Availability
                                            #==============================================================================
                                            # The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
                                            #
                                            # high-availability: zookeeper
                                            # The path where metadata for master recovery is persisted. While ZooKeeper stores
                                            # the small ground truth for checkpoint and leader election, this location stores
                                            # the larger objects, like persisted dataflow graphs.
                                            # 
                                            # Must be a durable file system that is accessible from all nodes
                                            # (like HDFS, S3, Ceph, nfs, ...) 
                                            #
                                            # high-availability.storageDir: hdfs:///flink/ha/
                                            # The list of ZooKeeper quorum peers that coordinate the high-availability
                                            # setup. This must be a list of the form:
                                            # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
                                            #
                                            # high-availability.zookeeper.quorum: localhost:2181
                                            # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
                                            # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
                                            # The default value is "open" and it can be changed to "creator" if ZK security is enabled
                                            #
                                            # high-availability.zookeeper.client.acl: open
                                            #==============================================================================
                                            # Fault tolerance and checkpointing
                                            #==============================================================================
                                            # The backend that will be used to store operator state checkpoints if
                                            # checkpointing is enabled. Checkpointing is enabled when execution.checkpointing.interval > 0.
                                            #
                                            # Execution checkpointing related parameters. Please refer to CheckpointConfig and ExecutionCheckpointingOptions for more details.
                                            #
                                            # execution.checkpointing.interval: 3min
                                            # execution.checkpointing.externalized-checkpoint-retention: [DELETE_ON_CANCELLATION, RETAIN_ON_CANCELLATION]
                                            # execution.checkpointing.max-concurrent-checkpoints: 1
                                            # execution.checkpointing.min-pause: 0
                                            # execution.checkpointing.mode: [EXACTLY_ONCE, AT_LEAST_ONCE]
                                            # execution.checkpointing.timeout: 10min
                                            # execution.checkpointing.tolerable-failed-checkpoints: 0
                                            # execution.checkpointing.unaligned: false
                                            #
                                            # Supported backends are 'hashmap', 'rocksdb', or the
                                            # .
                                            #
                                            # state.backend: hashmap
                                            # Directory for checkpoints filesystem, when using any of the default bundled
                                            # state backends.
                                            #
                                            # state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints
                                            # Default target directory for savepoints, optional.
                                            #
                                            # state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints
                                            # Flag to enable/disable incremental checkpoints for backends that
                                            # support incremental checkpoints (like the RocksDB state backend). 
                                            #
                                            # state.backend.incremental: false
                                            # The failover strategy, i.e., how the job computation recovers from task failures.
                                            # Only restart tasks that may have been affected by the task failure, which typically includes
                                            # downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.
                                            jobmanager.execution.failover-strategy: region
                                            #==============================================================================
                                            # Rest & web frontend
                                            #==============================================================================
                                            # The port to which the REST client connects to. If rest.bind-port has
                                            # not been specified, then the server will bind to this port as well.
                                            #
                                            rest.port: 8081
                                            # The address to which the REST client will connect to
                                            #
                                            rest.address: hadoop001
                                            # Port range for the REST and web server to bind to.
                                            #
                                            #rest.bind-port: 8080-8090
                                            # The address that the REST & web server binds to
                                            # By default, this is localhost, which prevents the REST & web server from
                                            # being able to communicate outside of the machine/container it is running on.
                                            #
                                            # To enable this, set the bind address to one that has access to outside-facing
                                            # network interface, such as 0.0.0.0.
                                            #
                                            rest.bind-address: 0.0.0.0
                                            # Flag to specify whether job submission is enabled from the web-based
                                            # runtime monitor. Uncomment to disable.
                                            #web.submit.enable: false
                                            # Flag to specify whether job cancellation is enabled from the web-based
                                            # runtime monitor. Uncomment to disable.
                                            #web.cancel.enable: false
                                            #==============================================================================
                                            # Advanced
                                            #==============================================================================
                                            # Override the directories for temporary files. If not specified, the
                                            # system-specific Java temporary directory (java.io.tmpdir property) is taken.
                                            #
                                            # For framework setups on Yarn, Flink will automatically pick up the
                                            # containers' temp directories without any need for configuration.
                                            #
                                            # Add a delimited list for multiple directories, using the system directory
                                            # delimiter (colon ':' on unix) or a comma, e.g.:
                                            #     /data1/tmp:/data2/tmp:/data3/tmp
                                            #
                                            # Note: Each directory entry is read from and written to by a different I/O
                                            # thread. You can include the same directory multiple times in order to create
                                            # multiple I/O threads against that directory. This is for example relevant for
                                            # high-throughput RAIDs.
                                            #
                                            # io.tmp.dirs: /tmp
                                            # The classloading resolve order. Possible values are 'child-first' (Flink's default)
                                            # and 'parent-first' (Java's default).
                                            #
                                            # Child first classloading allows users to use different dependency/library
                                            # versions in their application than those in the classpath. Switching back
                                            # to 'parent-first' may help with debugging dependency issues.
                                            #
                                            # classloader.resolve-order: child-first
                                            # The amount of memory going to the network stack. These numbers usually need 
                                            # no tuning. Adjusting them may be necessary in case of an "Insufficient number
                                            # of network buffers" error. The default min is 64MB, the default max is 1GB.
                                            # 
                                            # taskmanager.memory.network.fraction: 0.1
                                            # taskmanager.memory.network.min: 64mb
                                            # taskmanager.memory.network.max: 1gb
                                            #==============================================================================
                                            # Flink Cluster Security Configuration
                                            #==============================================================================
                                            # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
                                            # may be enabled in four steps:
                                            # 1. configure the local krb5.conf file
                                            # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
                                            # 3. make the credentials available to various JAAS login contexts
                                            # 4. configure the connector to use JAAS/SASL
                                            # The below configure how Kerberos credentials are provided. A keytab will be used instead of
                                            # a ticket cache if the keytab path and principal are set.
                                            # security.kerberos.login.use-ticket-cache: true
                                            # security.kerberos.login.keytab: /path/to/kerberos/keytab
                                            # security.kerberos.login.principal: flink-user
                                            # The configuration below defines which JAAS login contexts
                                            # security.kerberos.login.contexts: Client,KafkaClient
                                            #==============================================================================
                                            # ZK Security Configuration
                                            #==============================================================================
                                            # Below configurations are applicable if ZK ensemble is configured for security
                                            # Override below configuration to provide custom ZK service name if configured
                                            # zookeeper.sasl.service-name: zookeeper
                                            # The configuration below must match one of the values set in "security.kerberos.login.contexts"
                                            # zookeeper.sasl.login-context-name: Client
                                            #==============================================================================
                                            # HistoryServer
                                            #==============================================================================
                                            # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)
                                            # Directory to upload completed jobs to. Add this directory to the list of
                                            # monitored directories of the HistoryServer as well (see below).
                                            #jobmanager.archive.fs.dir: hdfs:///completed-jobs/
                                            # The address under which the web-based HistoryServer listens.
                                            #historyserver.web.address: 0.0.0.0
                                            # The port under which the web-based HistoryServer listens.
                                            #historyserver.web.port: 8082
                                            # Comma separated list of directories to monitor for completed jobs.
                                            #historyserver.archive.fs.dir: hdfs:///completed-jobs/
                                            # Interval in milliseconds for refreshing the monitored directories.
                                            #historyserver.archive.fs.refresh-interval: 10000
                                            
                                            • Flink1.12版本的配置

                                              Flink高手之路2-Flink集群的搭建,image-20230318160134929,第40张

                                              3)master

                                              Flink高手之路2-Flink集群的搭建,image-20230309185746272,第41张

                                              4)workers

                                              Flink高手之路2-Flink集群的搭建,image-20230309185804682,第42张

                                              5.分发文件

                                              1)分发flink

                                              Flink高手之路2-Flink集群的搭建,image-20230309190332591,第43张

                                              Flink高手之路2-Flink集群的搭建,image-20230309190406360,第44张

                                              2)分发/etc/profile

                                              Flink高手之路2-Flink集群的搭建,image-20230309190547242,第45张

                                              3)使得配置文件起作用

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第46张

                                              6.启动Flink集群,并查看相关进程

                                              Flink高手之路2-Flink集群的搭建,image-20230309190808988,第47张

                                              Flink高手之路2-Flink集群的搭建,image-20230309190824923,第48张

                                              Flink高手之路2-Flink集群的搭建,image-20230309190839370,第49张

                                              7.web ui查看

                                              Flink高手之路2-Flink集群的搭建,image-20230309191202732,第50张

                                              8.集群测试

                                              1)提交单词计数的任务,使用默认的参数

                                              Flink高手之路2-Flink集群的搭建,image-20230309191530804,第51张

                                              Flink高手之路2-Flink集群的搭建,image-20230309191557889,第52张

                                              Flink高手之路2-Flink集群的搭建,image-20230309191655389,第53张

                                              2)提交单词计数的任务,使用自定义参数

                                              准备好数据文件

                                              Flink高手之路2-Flink集群的搭建,image-20230309191818494,第54张

                                              上传hdfs

                                              首先要确保 hdfs 集群已经启动

                                              Flink高手之路2-Flink集群的搭建,image-20230309192011383,第55张

                                              发现我们以前已经上传过了

                                              Flink高手之路2-Flink集群的搭建,image-20230309192200809,第56张

                                              提交命令

                                              flink run ./WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output
                                              

                                              Flink高手之路2-Flink集群的搭建,image-20230309194837722,第57张

                                              出现错误:

                                              org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.
                                              

                                              这个错误需要把flink-1.16.1与hadoop3进行集成。

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第58张

                                              3)添加hadoop classpath配置
                                              export HADOOP_CLASSPATH=`hadoop classpath`
                                              

                                              Flink高手之路2-Flink集群的搭建,image-20230309204603095,第59张

                                              4)分发并激活环境变量

                                              Flink高手之路2-Flink集群的搭建,image-20230309204830807,第60张

                                              Flink高手之路2-Flink集群的搭建,image-20230309204852268,第61张

                                              5)下载flink和hadoop的连接工具,上传到flink的lib文件夹

                                              去maven中央仓库下载如下jar包并上传到 flink/lib文件夹中

                                              https://mvnrepository.com/artifact/commons-cli/commons-cli/1.5.0

                                              https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-3-uber

                                              这是为了集成hadoop,而shaded依赖已经解决了相关的jar包冲突等问题,该jar包属于第三方jar包,官网有链接,但是并没有hadoop 3.X的,这个直接在maven中央仓库搜索倒是可以搜得到。

                                              Flink高手之路2-Flink集群的搭建,image-20230309210652556,第62张

                                              上传 jar 包到lib目录下

                                              Flink高手之路2-Flink集群的搭建,image-20230309210736892,第63张

                                              分发 lib 目录到hadoop002和hadoop003

                                              Flink高手之路2-Flink集群的搭建,image-20230309211021659,第64张

                                              6)重新启动flink集群

                                              Flink高手之路2-Flink集群的搭建,image-20230309211259554,第65张

                                              7)重新提交单词计数的任务,使用自定义参数

                                              Flink高手之路2-Flink集群的搭建,image-20230309211757055,第66张

                                              查看 flink web ui

                                              Flink高手之路2-Flink集群的搭建,image-20230309211842634,第67张

                                              查看 hdfs web UI

                                              Flink高手之路2-Flink集群的搭建,image-20230309211947762,第68张

                                              点击一个文件查看

                                              Flink高手之路2-Flink集群的搭建,image-20230309212045076,第69张

                                              9.工作原理

                                              Flink高手之路2-Flink集群的搭建,image-20230318162403218,第70张

                                              五、独立集群高可用Standalone-HA搭建

                                              1.集群规划

                                              服务器JobManagerTaskManager
                                              hadoop001yy
                                              hadoop002yy
                                              hadoop003ny

                                              2.修改flink的配置文件

                                              1)修改flink-conf.yaml文件

                                              Flink高手之路2-Flink集群的搭建,image-20230318150454897,第71张

                                              Flink高手之路2-Flink集群的搭建,image-20230318150742199,第72张

                                              2)修改masters文件

                                              Flink高手之路2-Flink集群的搭建,image-20230318150958055,第73张

                                              3)不用修改workers文件

                                              3.同步配置文件

                                              分发到Hadoop002:

                                              Flink高手之路2-Flink集群的搭建,image-20230318151234175,第74张

                                              分发到Hadoop003:

                                              Flink高手之路2-Flink集群的搭建,image-20230318151309661,第75张

                                              4.修改hadoop002上的flink-conf.yaml文件

                                              Flink高手之路2-Flink集群的搭建,image-20230318160917260,第76张

                                              Flink高手之路2-Flink集群的搭建,image-20230318160936730,第77张

                                              注意:12.7版本下只需要修改一处就可以了,16.1需要修改3处,否则会提交任务失败。

                                              5.启动集群

                                              1)启动zookeeper

                                              启动ZooKeeper,查看ZooKeeper的状态:

                                              Flink高手之路2-Flink集群的搭建,image-20230318151739855,第78张

                                              Flink高手之路2-Flink集群的搭建,image-20230318151817728,第79张

                                              Flink高手之路2-Flink集群的搭建,image-20230318151832942,第80张

                                              2)启动hdfs
                                              3)启动yarn

                                              Flink高手之路2-Flink集群的搭建,image-20230318152032691,第81张

                                              4)启动flink集群

                                              Flink高手之路2-Flink集群的搭建,image-20230318152301750,第82张

                                              Flink高手之路2-Flink集群的搭建,image-20230318152322750,第83张

                                              Flink高手之路2-Flink集群的搭建,image-20230318152342210,第84张

                                              6.flink的web ui查看

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第85张

                                              Flink高手之路2-Flink集群的搭建,image-20230318154611294,第86张

                                              7.集群的测试

                                              1)单词计数使用默认的参数

                                              Flink高手之路2-Flink集群的搭建,image-20230318155026268,第87张

                                              2)杀掉hadoop001的master进程

                                              Flink高手之路2-Flink集群的搭建,image-20230318155238807,第88张

                                              此时查看web ui,hadoop001无法访问,hadoop002还可以继续访问

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第89张

                                              Flink高手之路2-Flink集群的搭建,image-20230318155329610,第90张

                                              3)再次提交单词计数的任务(使用默认参数)

                                              Flink高手之路2-Flink集群的搭建,image-20230318160813397,第91张

                                              集群能正常工作,说明高可用在起作用

                                              4)接着杀掉hadoop002的master

                                              Flink高手之路2-Flink集群的搭建,image-20230318161118145,第92张

                                              此时,node2的web ui也无法访问

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第93张

                                              再次提交任务,出现错误,无法运行任务

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第94张

                                              5)单词计数,使用自定义参数

                                              重启集群

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第95张

                                              删除hdfs上以前创建的output文件夹

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第96张

                                              提交任务,使用之前上传的数据

                                              flink run examples/batch/WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output
                                              

                                              Flink高手之路2-Flink集群的搭建,image-20230318161818134,第97张

                                              查看结果

                                              Flink高手之路2-Flink集群的搭建,image-20230318161919032,第98张

                                              杀掉hadoop001的master进程,并再次提交任务

                                              Flink高手之路2-Flink集群的搭建,image-20230318162011128,第99张

                                              Flink高手之路2-Flink集群的搭建,image-20230318162125670,第100张

                                              再次删除hdfs上之前创建的output文件夹

                                              Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第101张

                                              再次提交任务,可以正常运行并查看结果,说明高可用搭建成功

                                              Flink高手之路2-Flink集群的搭建,image-20230318162218451,第102张

                                              Flink高手之路2-Flink集群的搭建,image-20230318162258346,第103张

                                              8.工作原理

                                              Flink高手之路2-Flink集群的搭建,image-20230318162339591,第104张

                                              六、Flink on Yarn模式集群搭建及测试

                                              1.为什么要使用Flink on Yarn

                                              • yarn管理资源,可以按需使用,提高整个集群的资源利用率
                                              • 任务有优先级,可以根据优先级合理的安排任务运行作用
                                              • 基于yarn的调度系统,能够自动化的处理各个角色的容错

                                                2.集群规划

                                                跟standalone保持一致

                                                服务器JobManagerTaskManager
                                                hadoop001yy
                                                hadoop002yy
                                                hadoop003ny

                                                3.修改yarn的配置

                                                Flink高手之路2-Flink集群的搭建,image-20230318172552808,第105张

                                                4.启动相关的服务

                                                • zookeeper
                                                • hdfs
                                                • yarn
                                                • flink
                                                • historyserver(可选)

                                                  Flink高手之路2-Flink集群的搭建,image-20230318163102576,第106张

                                                  启动历史服务器

                                                  Flink高手之路2-Flink集群的搭建,image-20230318163202548,第107张

                                                  5.flink on yarn提交任务的模式

                                                  有两种模式

                                                  • session模式 :会话模式
                                                  • per-job模式:每任务模式

                                                    Flink高手之路2-Flink集群的搭建,image-20230318163241950,第108张

                                                    6.Session模式提交任务

                                                    1)开启会话(session)

                                                    Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第109张

                                                    语法:

                                                    yarn-session.sh -n 2 -tm 800 -s 1 -d
                                                    

                                                    说明:

                                                    • n:表示申请容器的数量,也就是worker的数量,也就是cpu的核心数
                                                    • tm:表示给个worker(TaskManager)的内存大小
                                                    • s:表示每个worker的slot的数量
                                                    • d:表示后台运行

                                                      启动一个会话

                                                      yarn-session.sh -n 2 -tm 800 -s 1 -d
                                                      

                                                      Flink高手之路2-Flink集群的搭建,image-20230318165440184,第110张

                                                      此时的进程

                                                      Flink高手之路2-Flink集群的搭建,image-20230318165616740,第111张

                                                      web ui的查看

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第112张

                                                      Flink高手之路2-Flink集群的搭建,image-20230318165726374,第113张

                                                      Flink高手之路2-Flink集群的搭建,image-20230318165753985,第114张

                                                      Flink高手之路2-Flink集群的搭建,image-20230318165813998,第115张

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第116张

                                                      2)提交任务-单词计数

                                                      使用的默认的参数,提交任务

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第117张

                                                      查看yarn的web ui

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170129754,第118张

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170153354,第119张

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170237753,第120张

                                                      3)再次提交任务

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170401039,第121张

                                                      再次查看yarn的web ui

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第122张

                                                      7.关闭yarn-session

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170550643,第123张

                                                      关闭会话

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第124张

                                                      查看进程

                                                      Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第125张

                                                      查看yarn的web ui

                                                      Flink高手之路2-Flink集群的搭建,image-20230318170856929,第126张

                                                      8.Per-Job模式提交任务

                                                      1)语法
                                                      flink run -m yarn-cluster -yjm 1024 -ytm 1024 examples/batch/WordCount.jar 
                                                      

                                                      说明:

                                                      • m:jobmanager的地址
                                                      • yjm:jobmanager的内存大小
                                                      • ytm:taskmanager的内存大小
                                                        2)提交任务

                                                        Flink高手之路2-Flink集群的搭建,image-20230318173249697,第127张

                                                        3)查看yarn的web ui

                                                        Flink高手之路2-Flink集群的搭建,image-20230318182246540,第128张

                                                        执行过程中出现错误

                                                        Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第129张

                                                        解决错误,可以修改flink的配置

                                                        Flink高手之路2-Flink集群的搭建,image-20230318174003186,第130张

                                                        分发配置文件,并重启flink

                                                        4)再次提交任务

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183041623,第131张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183059616,第132张

                                                        5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183132638,第133张

                                                        9.flink任务提交参数总结

                                                        Flink高手之路2-Flink集群的搭建,在这里插入图片描述,第134张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183302293,第135张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183319544,第136张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183354567,第137张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183428368,第138张

                                                        Flink高手之路2-Flink集群的搭建,image-20230318183444450,第139张

                                                        参考文章:

                                                        flink启动后web访问问题

                                                        Flink高手之路:Flink的环境搭建

                                                        org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:Hadoop is not in the classpath/dependencies

                                                        flink 1.15.2集群搭建(Flink Standalone模式)

网友评论

搜索
最新文章
热门文章
热门标签