文章目录
- Flink高手之路2-Flink集群的搭建
- 一、Flink的安装模式
- 1.本地local模式
- 2.独立集群模式standalone
- 3.高可用的独立集群模式standalone HA
- 4.基于yarn模式Flink on yarn
- 二、基础环境
- 三、Flink的local模式安装
- 1. 下载安装包
- 2. 上传服务器
- 3.解压
- 4. 配置环境变量
- 5. 使环境变量起作用
- 6.测试显示版本
- 7.测试scala shell交互命令行(可跳过)
- 1)安装一下 Flink 1.12 版本
- 2)启动命令行
- 3)web ui查看
- 4)scala命令行示例-单词计数(批处理)
- 5)scala命令行示例2-窗口计数(流处理)
- 6)退出命令行
- 8.local模式测试
- 9.查看Flink的web ui
- 10.local集群运行测试任务-单词计数
- 1)先准备好数据文件
- 2)找到单词计数的jar包
- 3)提交任务到集群上运行
- 4)web ui任务执行过程查看
- 11.Flink本地(local)模式任务执行的原理
- 四、Flink的独立集群Standalone模式的安装及测试
- 1.集群规划
- 2.下载安装包并上传服务器解压
- 3.配置环境变量并使环境变量起作用
- 4.修改Flink的配置文件
- 1)修改yaml或者yml文件的注意事项
- 2)修改flink-conf.yaml
- 3)master
- 4)workers
- 5.分发文件
- 1)分发flink
- 2)分发/etc/profile
- 3)使得配置文件起作用
- 6.启动Flink集群,并查看相关进程
- 7.web ui查看
- 8.集群测试
- 1)提交单词计数的任务,使用默认的参数
- 2)提交单词计数的任务,使用自定义参数
- 3)添加hadoop classpath配置
- 4)分发并激活环境变量
- 5)下载flink和hadoop的连接工具,上传到flink的lib文件夹
- 6)重新启动flink集群
- 7)重新提交单词计数的任务,使用自定义参数
- 9.工作原理
- 五、独立集群高可用Standalone-HA搭建
- 1.集群规划
- 2.修改flink的配置文件
- 1)修改flink-conf.yaml文件
- 2)修改masters文件
- 3)不用修改workers文件
- 3.同步配置文件
- 4.修改hadoop002上的flink-conf.yaml文件
- 5.启动集群
- 1)启动zookeeper
- 2)启动hdfs
- 3)启动yarn
- 4)启动flink集群
- 6.flink的web ui查看
- 7.集群的测试
- 1)单词计数使用默认的参数
- 2)杀掉hadoop001的master进程
- 3)再次提交单词计数的任务(使用默认参数)
- 4)接着杀掉hadoop002的master
- 5)单词计数,使用自定义参数
- 8.工作原理
- 六、Flink on Yarn模式集群搭建及测试
- 1.为什么要使用Flink on Yarn
- 2.集群规划
- 3.修改yarn的配置
- 4.启动相关的服务
- 5.flink on yarn提交任务的模式
- 6.Session模式提交任务
- 1)开启会话(session)
- 2)提交任务-单词计数
- 3)再次提交任务
- 7.关闭yarn-session
- 8.Per-Job模式提交任务
- 1)语法
- 2)提交任务
- 3)查看yarn的web ui
- 4)再次提交任务
- 5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭
- 9.flink任务提交参数总结
Flink高手之路2-Flink集群的搭建
一、Flink的安装模式
1.本地local模式
本地单机模式,一般用于测试环境是否搭建成功,很少使用
2.独立集群模式standalone
Flink自带集群,开发测试使用
3.高可用的独立集群模式standalone HA
Flink自带集群,用于开发测试
4.基于yarn模式Flink on yarn
计算资源统一交给hadoop的yarn进行管理,用于生产环境
二、基础环境
- 虚拟机
- jdk1.8
- ssh免密登录
三、Flink的local模式安装
1. 下载安装包
点击:
点击下载:
2. 上传服务器
找到安装包,并上传:
上传成功:
3.解压
tar xzvf flink-1.16.1-bin-scala_2.12.tgz -C /export/servers/
进入 Servers 目录下:
进入 Flink 目录下:
进入 bin 目录下:
4. 配置环境变量
5. 使环境变量起作用
6.测试显示版本
7.测试scala shell交互命令行(可跳过)
需要flink的版本是1.12及以下的版本,在高版本中 scala shell 被舍去了。
1)安装一下 Flink 1.12 版本
上传文件
上传成功:
解压
2)启动命令行
启动 shell
bin/start-scala-shell.sh local
3)web ui查看
4)scala命令行示例-单词计数(批处理)
- 准备好数据文件
benv.readTextFile("/root/a.txt").flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1).print()
5)scala命令行示例2-窗口计数(流处理)
6)退出命令行
输入 :quit 或者 Ctrl + d
8.local模式测试
启动集群并查看进程
9.查看Flink的web ui
启动失败,需要修改/etc/hosts文件,添加localhost的定义
若直接添加 192.168.92.128 localhost在启动 Hbase时会出现如下错误
修改完成后,启动成功:
10.local集群运行测试任务-单词计数
1)先准备好数据文件
2)找到单词计数的jar包
3)提交任务到集群上运行
出现错误:org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: java.util.concurrent.ExecutionException: org.apache.flink.runtime.client.JobSubmissionException: Failed to submit JobGraph.
原因:没有启动Flink集群
启动集群:
运行成功:
执行成功后,在/root目录下出现 output 目录
运行结果
4)web ui任务执行过程查看
点击任务
11.Flink本地(local)模式任务执行的原理
Flink程序提交任务到 JobClient ,JobClient 提交任务到 JobManager【Master】,JobManager 分发任务给TaskManager,TaskManager执行任务,执行任务后发送状态给 JobManager,JobManager 将结果返回到 JobClient 。
四、Flink的独立集群Standalone模式的安装及测试
1.集群规划
服务器 JobManager TaskManager hadoop001 ✅ ✅ hadoop002 ❎ ✅ hadoop003 ❎ ✅ 2.下载安装包并上传服务器解压
同上
3.配置环境变量并使环境变量起作用
同上
4.修改Flink的配置文件
1)修改yaml或者yml文件的注意事项
- 不同的等级用冒号隔开,同时缩进格式
- 次等级的前面是空格,不能使用制表符
- 冒号之后如果有值,那么冒号与值之间用至少一个空格分隔,不能紧贴在一起
2)修改flink-conf.yaml
- flink1.16版本的配置
################################################################################ # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ################################################################################ #============================================================================== # Common #============================================================================== # The external address of the host on which the JobManager runs and can be # reached by the TaskManagers and any clients which want to connect. This setting # is only used in Standalone mode and may be overwritten on the JobManager side # by specifying the --host
parameter of the bin/jobmanager.sh executable. # In high availability mode, if you use the bin/start-cluster.sh script and setup # the conf/masters file, this will be taken care of automatically. Yarn # automatically configure the host name based on the hostname of the node where the # JobManager runs. jobmanager.rpc.address: hadoop001 # The RPC port where the JobManager is reachable. jobmanager.rpc.port: 6123 # The host interface the JobManager will bind to. By default, this is localhost, and will prevent # the JobManager from communicating outside the machine/container it is running on. # On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0. # On Kubernetes this setting will be ignored, defaulting to 0.0.0.0. # # To enable this, set the bind-host address to one that has access to an outside facing network # interface, such as 0.0.0.0. jobmanager.bind-host: 0.0.0.0 # The total process memory size for the JobManager. # # Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead. jobmanager.memory.process.size: 1600m # The host interface the TaskManager will bind to. By default, this is localhost, and will prevent # the TaskManager from communicating outside the machine/container it is running on. # On YARN this setting will be ignored if it is set to 'localhost', defaulting to 0.0.0.0. # On Kubernetes this setting will be ignored, defaulting to 0.0.0.0. # # To enable this, set the bind-host address to one that has access to an outside facing network # interface, such as 0.0.0.0. taskmanager.bind-host: 0.0.0.0 # The address of the host on which the TaskManager runs and can be reached by the JobManager and # other TaskManagers. If not specified, the TaskManager will try different strategies to identify # the address. # # Note this address needs to be reachable by the JobManager and forward traffic to one of # the interfaces the TaskManager is bound to (see 'taskmanager.bind-host'). # # Note also that unless all TaskManagers are running on the same machine, this address needs to be # configured separately for each TaskManager. taskmanager.host: hadoop001 # The total process memory size for the TaskManager. # # Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead. taskmanager.memory.process.size: 1728m # To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'. # It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory. # # taskmanager.memory.flink.size: 1280m # The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline. taskmanager.numberOfTaskSlots: 2 # The parallelism used for programs that did not specify and other parallelism. parallelism.default: 2 # The default file system scheme and authority. # # By default file paths without scheme are interpreted relative to the local # root file system 'file:///'. Use this to override the default and interpret # relative paths relative to a different file system, # for example 'hdfs://mynamenode:12345' # # fs.default-scheme #============================================================================== # High Availability #============================================================================== # The high-availability mode. Possible options are 'NONE' or 'zookeeper'. # # high-availability: zookeeper # The path where metadata for master recovery is persisted. While ZooKeeper stores # the small ground truth for checkpoint and leader election, this location stores # the larger objects, like persisted dataflow graphs. # # Must be a durable file system that is accessible from all nodes # (like HDFS, S3, Ceph, nfs, ...) # # high-availability.storageDir: hdfs:///flink/ha/ # The list of ZooKeeper quorum peers that coordinate the high-availability # setup. This must be a list of the form: # "host1:clientPort,host2:clientPort,..." (default clientPort: 2181) # # high-availability.zookeeper.quorum: localhost:2181 # ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes # It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE) # The default value is "open" and it can be changed to "creator" if ZK security is enabled # # high-availability.zookeeper.client.acl: open #============================================================================== # Fault tolerance and checkpointing #============================================================================== # The backend that will be used to store operator state checkpoints if # checkpointing is enabled. Checkpointing is enabled when execution.checkpointing.interval > 0. # # Execution checkpointing related parameters. Please refer to CheckpointConfig and ExecutionCheckpointingOptions for more details. # # execution.checkpointing.interval: 3min # execution.checkpointing.externalized-checkpoint-retention: [DELETE_ON_CANCELLATION, RETAIN_ON_CANCELLATION] # execution.checkpointing.max-concurrent-checkpoints: 1 # execution.checkpointing.min-pause: 0 # execution.checkpointing.mode: [EXACTLY_ONCE, AT_LEAST_ONCE] # execution.checkpointing.timeout: 10min # execution.checkpointing.tolerable-failed-checkpoints: 0 # execution.checkpointing.unaligned: false # # Supported backends are 'hashmap', 'rocksdb', or the # . # # state.backend: hashmap # Directory for checkpoints filesystem, when using any of the default bundled # state backends. # # state.checkpoints.dir: hdfs://namenode-host:port/flink-checkpoints # Default target directory for savepoints, optional. # # state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints # Flag to enable/disable incremental checkpoints for backends that # support incremental checkpoints (like the RocksDB state backend). # # state.backend.incremental: false # The failover strategy, i.e., how the job computation recovers from task failures. # Only restart tasks that may have been affected by the task failure, which typically includes # downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption. jobmanager.execution.failover-strategy: region #============================================================================== # Rest & web frontend #============================================================================== # The port to which the REST client connects to. If rest.bind-port has # not been specified, then the server will bind to this port as well. # rest.port: 8081 # The address to which the REST client will connect to # rest.address: hadoop001 # Port range for the REST and web server to bind to. # #rest.bind-port: 8080-8090 # The address that the REST & web server binds to # By default, this is localhost, which prevents the REST & web server from # being able to communicate outside of the machine/container it is running on. # # To enable this, set the bind address to one that has access to outside-facing # network interface, such as 0.0.0.0. # rest.bind-address: 0.0.0.0 # Flag to specify whether job submission is enabled from the web-based # runtime monitor. Uncomment to disable. #web.submit.enable: false # Flag to specify whether job cancellation is enabled from the web-based # runtime monitor. Uncomment to disable. #web.cancel.enable: false #============================================================================== # Advanced #============================================================================== # Override the directories for temporary files. If not specified, the # system-specific Java temporary directory (java.io.tmpdir property) is taken. # # For framework setups on Yarn, Flink will automatically pick up the # containers' temp directories without any need for configuration. # # Add a delimited list for multiple directories, using the system directory # delimiter (colon ':' on unix) or a comma, e.g.: # /data1/tmp:/data2/tmp:/data3/tmp # # Note: Each directory entry is read from and written to by a different I/O # thread. You can include the same directory multiple times in order to create # multiple I/O threads against that directory. This is for example relevant for # high-throughput RAIDs. # # io.tmp.dirs: /tmp # The classloading resolve order. Possible values are 'child-first' (Flink's default) # and 'parent-first' (Java's default). # # Child first classloading allows users to use different dependency/library # versions in their application than those in the classpath. Switching back # to 'parent-first' may help with debugging dependency issues. # # classloader.resolve-order: child-first # The amount of memory going to the network stack. These numbers usually need # no tuning. Adjusting them may be necessary in case of an "Insufficient number # of network buffers" error. The default min is 64MB, the default max is 1GB. # # taskmanager.memory.network.fraction: 0.1 # taskmanager.memory.network.min: 64mb # taskmanager.memory.network.max: 1gb #============================================================================== # Flink Cluster Security Configuration #============================================================================== # Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors - # may be enabled in four steps: # 1. configure the local krb5.conf file # 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit) # 3. make the credentials available to various JAAS login contexts # 4. configure the connector to use JAAS/SASL # The below configure how Kerberos credentials are provided. A keytab will be used instead of # a ticket cache if the keytab path and principal are set. # security.kerberos.login.use-ticket-cache: true # security.kerberos.login.keytab: /path/to/kerberos/keytab # security.kerberos.login.principal: flink-user # The configuration below defines which JAAS login contexts # security.kerberos.login.contexts: Client,KafkaClient #============================================================================== # ZK Security Configuration #============================================================================== # Below configurations are applicable if ZK ensemble is configured for security # Override below configuration to provide custom ZK service name if configured # zookeeper.sasl.service-name: zookeeper # The configuration below must match one of the values set in "security.kerberos.login.contexts" # zookeeper.sasl.login-context-name: Client #============================================================================== # HistoryServer #============================================================================== # The HistoryServer is started and stopped via bin/historyserver.sh (start|stop) # Directory to upload completed jobs to. Add this directory to the list of # monitored directories of the HistoryServer as well (see below). #jobmanager.archive.fs.dir: hdfs:///completed-jobs/ # The address under which the web-based HistoryServer listens. #historyserver.web.address: 0.0.0.0 # The port under which the web-based HistoryServer listens. #historyserver.web.port: 8082 # Comma separated list of directories to monitor for completed jobs. #historyserver.archive.fs.dir: hdfs:///completed-jobs/ # Interval in milliseconds for refreshing the monitored directories. #historyserver.archive.fs.refresh-interval: 10000 - Flink1.12版本的配置
3)master
4)workers
5.分发文件
1)分发flink
2)分发/etc/profile
3)使得配置文件起作用
6.启动Flink集群,并查看相关进程
7.web ui查看
8.集群测试
1)提交单词计数的任务,使用默认的参数
2)提交单词计数的任务,使用自定义参数
准备好数据文件
上传hdfs
首先要确保 hdfs 集群已经启动
发现我们以前已经上传过了
提交命令
flink run ./WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output
出现错误:
org.apache.flink.core.fs.UnsupportedFileSystemSchemeException: Hadoop is not in the classpath/dependencies.
这个错误需要把flink-1.16.1与hadoop3进行集成。
3)添加hadoop classpath配置
export HADOOP_CLASSPATH=`hadoop classpath`
4)分发并激活环境变量
5)下载flink和hadoop的连接工具,上传到flink的lib文件夹
去maven中央仓库下载如下jar包并上传到 flink/lib文件夹中
https://mvnrepository.com/artifact/commons-cli/commons-cli/1.5.0
https://mvnrepository.com/artifact/org.apache.flink/flink-shaded-hadoop-3-uber
这是为了集成hadoop,而shaded依赖已经解决了相关的jar包冲突等问题,该jar包属于第三方jar包,官网有链接,但是并没有hadoop 3.X的,这个直接在maven中央仓库搜索倒是可以搜得到。
上传 jar 包到lib目录下
分发 lib 目录到hadoop002和hadoop003
6)重新启动flink集群
7)重新提交单词计数的任务,使用自定义参数
查看 flink web ui
查看 hdfs web UI
点击一个文件查看
9.工作原理
五、独立集群高可用Standalone-HA搭建
1.集群规划
服务器 JobManager TaskManager hadoop001 y y hadoop002 y y hadoop003 n y 2.修改flink的配置文件
1)修改flink-conf.yaml文件
2)修改masters文件
3)不用修改workers文件
3.同步配置文件
分发到Hadoop002:
分发到Hadoop003:
4.修改hadoop002上的flink-conf.yaml文件
注意:12.7版本下只需要修改一处就可以了,16.1需要修改3处,否则会提交任务失败。
5.启动集群
1)启动zookeeper
启动ZooKeeper,查看ZooKeeper的状态:
2)启动hdfs
3)启动yarn
4)启动flink集群
6.flink的web ui查看
7.集群的测试
1)单词计数使用默认的参数
2)杀掉hadoop001的master进程
此时查看web ui,hadoop001无法访问,hadoop002还可以继续访问
3)再次提交单词计数的任务(使用默认参数)
集群能正常工作,说明高可用在起作用
4)接着杀掉hadoop002的master
此时,node2的web ui也无法访问
再次提交任务,出现错误,无法运行任务
5)单词计数,使用自定义参数
重启集群
删除hdfs上以前创建的output文件夹
提交任务,使用之前上传的数据
flink run examples/batch/WordCount.jar --input hdfs://hadoop001:9000/input --output hdfs://hadoop001:9000/output
查看结果
杀掉hadoop001的master进程,并再次提交任务
再次删除hdfs上之前创建的output文件夹
再次提交任务,可以正常运行并查看结果,说明高可用搭建成功
8.工作原理
六、Flink on Yarn模式集群搭建及测试
1.为什么要使用Flink on Yarn
- yarn管理资源,可以按需使用,提高整个集群的资源利用率
- 任务有优先级,可以根据优先级合理的安排任务运行作用
- 基于yarn的调度系统,能够自动化的处理各个角色的容错
2.集群规划
跟standalone保持一致
服务器 JobManager TaskManager hadoop001 y y hadoop002 y y hadoop003 n y 3.修改yarn的配置
4.启动相关的服务
- zookeeper
- hdfs
- yarn
- flink
- historyserver(可选)
启动历史服务器
5.flink on yarn提交任务的模式
有两种模式
- session模式 :会话模式
- per-job模式:每任务模式
6.Session模式提交任务
1)开启会话(session)
语法:
yarn-session.sh -n 2 -tm 800 -s 1 -d
说明:
- n:表示申请容器的数量,也就是worker的数量,也就是cpu的核心数
- tm:表示给个worker(TaskManager)的内存大小
- s:表示每个worker的slot的数量
- d:表示后台运行
启动一个会话
yarn-session.sh -n 2 -tm 800 -s 1 -d
此时的进程
web ui的查看
2)提交任务-单词计数
使用的默认的参数,提交任务
查看yarn的web ui
3)再次提交任务
再次查看yarn的web ui
7.关闭yarn-session
关闭会话
查看进程
查看yarn的web ui
8.Per-Job模式提交任务
1)语法
flink run -m yarn-cluster -yjm 1024 -ytm 1024 examples/batch/WordCount.jar
说明:
- m:jobmanager的地址
- yjm:jobmanager的内存大小
- ytm:taskmanager的内存大小
2)提交任务
3)查看yarn的web ui
执行过程中出现错误
解决错误,可以修改flink的配置
分发配置文件,并重启flink
4)再次提交任务
5)查看jps,并没有相关的进程,也就是当任务执行完成后,进程自动关闭
9.flink任务提交参数总结
参考文章:
flink启动后web访问问题
Flink高手之路:Flink的环境搭建
org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:Hadoop is not in the classpath/dependencies
flink 1.15.2集群搭建(Flink Standalone模式)
- Flink1.12版本的配置
- flink1.16版本的配置
- 准备好数据文件
猜你喜欢
- 13小时前网络安全(黑客技术)—2024自学
- 13小时前【计算机毕设选题】基于大数据的股票量化分析与股价预测系统
- 13小时前【车载开发系列】诊断故障码DTC中的扩展数据信息
- 13小时前JavaMySql+hadoop高校固定资产管理系统 74965(免费领源码)计算机毕业设计选题推荐上万套实战教程JAVA、PHP,node.js,C++、python等
- 13小时前留学中介收费情况(留学中介机构收费标准)
- 11小时前准备好了吗英文(准备好了吗英文咋说)
- 9小时前风琴岛在哪里(风琴岛是哪个省)
- 7小时前无痕钉怎么挂图解(无痕钉怎么安装视频)
- 5小时前桂林航天工业学院(桂林航天工业学院图书馆官网)
- 2小时前画布(画布是什么意思)
网友评论
- 搜索
- 最新文章
- 热门文章