文章目录
- (99)WritableComparable排序
- 什么是排序
- 什么时候需要排序
- 排序有哪些分类
- 如何实现自定义排序
- (100)全排序案例
- 案例需求
- 思路分析
- 实际代码
- (101)二次排序案例
- (102) 区内排序案例
- 参考文献
(99)WritableComparable排序
什么是排序
排序是MR中最重要的操作之一,也是面试中可能被问到的重点。
MapTask和ReduceTask中都会对数据按照KEY来排序,主要是为了效率,排完序之后,相同key值的数据会被放在一起,更方便下一步(如Reducer())的汇总处理。
默认排序是按照字典顺序(字母由小到大,或者是数字由小到大)排序,且实现该排序的方法是快速排序。
什么时候需要排序
MR的过程中,什么时候用到了排序呢?
Map阶段:
- 环形缓冲区溢写到磁盘之前,会将每个分区内数据分别进行一个快排,这个排序是在内存中完成的;(对key的索引,按照字典顺序排列)
- 环形缓冲区多轮溢写完毕后,会形成一堆文件,这时候会对这些文件做merge归并排序,我理解是单个MapTask最终会汇总形成一个文件;
Reduce阶段:
- ReduceTask会主动拉取MapTask们的输出文件,理论上是会优先保存到内存里,但是往往内存里放不下,所以多数情况下会直接溢写到磁盘,于是我们会得到多个文件。当文件数量超过阈值,之后需要做归并排序,合并成一个大文件。如果是内存中的数据超过阈值,则会进行一次合并后将数据溢写到磁盘。当所有数据拷贝完后,ReduceTask会统一对内存和磁盘上的所有数据进行一次归并排序。
- 文件合并后其实还可以进行一个分组排序,过于复杂,这里就不介绍了。
排序有哪些分类
MR里的排序还有部分排序、全排序、辅助排序、二次排序的不同说法,注意,它们之间不是像那种传统的排序算法之间的区别,只是当排序在不同场景的时候,分别起了个名字。
MapReduce根据输入记录的键对数据集排序,保证输出的每个文件内部是有序的,这就是部分排序。
最终输出结果只有一个文件,且文件内部有序。这就是全排序。
全排序的实现方式是只设置一个ReduceTask。但是这种方式在处理大型文件时效率很低很低,因为一台机器处理全部数据,完全没有利用MR所提供的并行架构的优势,生产环境上完全不适用。
所以生产环境里,常用的还是部分排序。
辅助排序,就是GroupingComparator分组。
这个似乎是可选的,是在Reduce阶段,Reducer在从Map阶段主动拉取完数据后,会对所有文件做一次归并排序。做完归并排序之后,理论上就可以进行辅助排序。
辅助排序有啥用呢,就是当接收到的Key是个bean对象时,辅助排序可以让一个或者几个字段相同的key(全部字段不相同)进入同一个Reduce(),所以也起名叫做分组排序。
二次排序比较简单,在自定义排序过程中,如果compareTo中的判断条件为两个,那它就是二次排序。
如何实现自定义排序
说到这里,那 如何实现自定义排序 呢?
如果是bean对象作为key传输,那需要实现WritableComparable接口,重写compareTo方法,就可以实现自定义排序。
@Override public int compareTo(FlowBean bean) { int result; // 按照总流量大小,倒序排列 if (this.sumFlow > bean.getSumFlow()) { result = -1; }else if (this.sumFlow < bean.getSumFlow()) { result = 1; }else { result = 0; } return result; }
(100)全排序案例
案例需求
之前我们做过一个案例,输入文件有一个,里面放的是每个手机号的上行流量和下行流量,输出同样是一个文件,里面放的除了手机号的上行流量和下行流量之外,还多了一行总流量。
这时候我们提一个新需求,就是我不止要这个输出文件,我还要这个文件里的内容,按照总流量降序排列。
思路分析
MapReduce里,只能对Key进行排序。在先前的需求里,我们是用手机号作为key,上行流量、下行流量和总流量组成一个bean,作为value,这样的安排显然不适合新需求。
因此我们需要改变一下,将上行流量、下行流量和总流量组成的bean作为key,而将手机号作为value,如此来排序。
所以第一步,我们需要对我们自定义的FlowBean对象声明WritableComparable接口,并重写CompareTo方法,这一步的目的是使得FlowBean可进行算数比较,从而允许排序:
@Override public int CompareTo(FlowBean o){ // 按照总流量,降序排列 return this.sumFlow > o.getSumFlow()?-1:1; }
注意这里,因为Hadoop里默认的字典排序是从小到大排序,如果想实现案例里由大到小的排序,那么当大于的时候,就要返回-1,从而将大的值排在前面。
其次,Mapper类里:
context.write(bean, 手机号)
bean成了key,手机号成了value。
最后,Reduce类里,需要循环输出,避免出现总流量相同的情况。
for (Text text: values){ context.write(text, key); // 注意顺序,原先的key放在value位置 }
2023-7-19 11:16:04 这里没懂。。。
哦哦明白了,什么样的数据会进一个Reducer呢,当然是key 值相同的会进同一个,又因为我们之前compareTo的时候用的是总流量,所以最后是总流量相同的记录会送进同一个Reducer,然后汇总成一条记录做输出,毕竟reducer就是用来做汇总的。
但"汇总成一条记录"这并不是我们想要的,我们需要的是把这些数据原模原样输出来。这就是为什么我们在Reducer的reduce()里面,要加上循环输出的原因。
实际代码
贴一下教程里的代码实现:
首先是FlowBean对象,需要声明WritableComparable接口,并重写CompareTo()
package com.atguigu.mapreduce.writablecompable; import org.apache.hadoop.io.WritableComparable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class FlowBean implements WritableComparable
{ private long upFlow; //上行流量 private long downFlow; //下行流量 private long sumFlow; //总流量 //提供无参构造 public FlowBean() { } //生成三个属性的getter和setter方法 public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } public void setSumFlow() { this.sumFlow = this.upFlow + this.downFlow; } //实现序列化和反序列化方法,注意顺序一定要一致 @Override public void write(DataOutput out) throws IOException { out.writeLong(this.upFlow); out.writeLong(this.downFlow); out.writeLong(this.sumFlow); } @Override public void readFields(DataInput in) throws IOException { this.upFlow = in.readLong(); this.downFlow = in.readLong(); this.sumFlow = in.readLong(); } //重写ToString,最后要输出FlowBean @Override public String toString() { return upFlow + "\t" + downFlow + "\t" + sumFlow; } @Override public int compareTo(FlowBean o) { //按照总流量比较,倒序排列 if(this.sumFlow > o.sumFlow){ return -1; }else if(this.sumFlow < o.sumFlow){ return 1; }else { return 0; } } } 然后编写Mapper类:
package com.atguigu.mapreduce.writablecompable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class FlowMapper extends Mapper
{ private FlowBean outK = new FlowBean(); private Text outV = new Text(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //1 获取一行数据 String line = value.toString(); //2 按照"\t",切割数据 String[] split = line.split("\t"); //3 封装outK outV outK.setUpFlow(Long.parseLong(split[1])); outK.setDownFlow(Long.parseLong(split[2])); outK.setSumFlow(); outV.set(split[0]); //4 写出outK outV context.write(outK,outV); } } 然后编写Reducer类:
package com.atguigu.mapreduce.writablecompable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class FlowReducer extends Reducer
{ @Override protected void reduce(FlowBean key, Iterable values, Context context) throws IOException, InterruptedException { //遍历values集合,循环写出,避免总流量相同的情况 for (Text value : values) { //调换KV位置,反向写出 context.write(value,key); } } } 最后编写驱动类:
package com.atguigu.mapreduce.writablecompable; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class FlowDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //1 获取job对象 Configuration conf = new Configuration(); Job job = Job.getInstance(conf); //2 关联本Driver类 job.setJarByClass(FlowDriver.class); //3 关联Mapper和Reducer job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReducer.class); //4 设置Map端输出数据的KV类型 job.setMapOutputKeyClass(FlowBean.class); job.setMapOutputValueClass(Text.class); //5 设置程序最终输出的KV类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowBean.class); //6 设置输入输出路径 FileInputFormat.setInputPaths(job, new Path("D:\\inputflow2")); FileOutputFormat.setOutputPath(job, new Path("D:\\comparout")); //7 提交Job boolean b = job.waitForCompletion(true); System.exit(b ? 0 : 1); } }
完成,仅做了解即可。
(101)二次排序案例
二次排序的概念很简单,其实之前提过了,就是在自定义排序的时候,判断条件有两个。
比如说,原先我对一堆人排序,是按照身高从高到低排,但是身高一样的就没法排序了,这时候我可以再加入一个判断条件,比如说如果身高一样的话,就按体重排序。
具体就是修改FlowBean的CompareTo方法,在第一条件相等的时候,添加第二判定条件。
public int compareTo(FlowBean o) { //按照总流量比较,倒序排列 if(this.sumFlow > o.sumFlow){ return -1; }else if(this.sumFlow < o.sumFlow){ return 1; }else { if (this.upFlow > o.upFlow){ return 1; } else if (this.upFlow < o.upFlow){ return -1; } else { return 0; } } }
如果有需要的话,还可以继续加第三判定条件。
(102) 区内排序案例
还是之前的手机号案例,之前我们想要的是,只有一个文件,然后文件内所有数据按照总流量降序排列。
现在我们提出一个新要求,按照前3位来分区输出,比如说136的在一个文件里,137的在一个文件里,以此类推。而且每个文件内部,还需要按照总流量降序排列。
本质上就是之前说的分区 + 排序,这两部分的结合。需要额外定义好Partitioner类。
贴一下教程里的代码示例,其实只需要在上一小节的基础上补充自定义分区类即可:
首先自定义好分区类:
package com.atguigu.mapreduce.partitionercompable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Partitioner; public class ProvincePartitioner2 extends Partitioner
{ @Override public int getPartition(FlowBean flowBean, Text text, int numPartitions) { //获取手机号前三位 String phone = text.toString(); String prePhone = phone.substring(0, 3); //定义一个分区号变量partition,根据prePhone设置分区号 int partition; if("136".equals(prePhone)){ partition = 0; }else if("137".equals(prePhone)){ partition = 1; }else if("138".equals(prePhone)){ partition = 2; }else if("139".equals(prePhone)){ partition = 3; }else { partition = 4; } //最后返回分区号partition return partition; } } 然后在驱动类里注册好分区器:
// 设置自定义分区器 job.setPartitionerClass(ProvincePartitioner2.class); // 设置对应的ReduceTask的个数 job.setNumReduceTasks(5);
其他跟上一小节保持一致即可。
参考文献
- 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】
猜你喜欢
网友评论
- 搜索
- 最新文章
- 热门文章