原文作者:我辈李想
版权声明:文章原创,转载时请务必加上原文超链接、作者信息和本声明。
文章目录
- 前言
- 一、常见用法
- 1.消息可靠性
- 2.持久化机制
- 3.消息积压
- 批量消费:增加 prefetch 的数量,提高单次连接的消息数
- 并发消费:多部署几台消费者实例
- 4.重复消费
- 二、其他
- 1.队列存在大量unacked数据
- 2.断线重连
- 3.rabbitmq心跳连接
前言
一、常见用法
1.消息可靠性
RabbitMQ 提供了多种机制来确保消息的可靠性,以防止消息丢失或被意外删除。以下是几种提高消息可靠性的方法:
-
持久化消息(Durable Message):在发布消息时,将消息的 deliveryMode 设置为 2,即可将消息设置为持久化消息。持久化消息会将消息写入磁盘,即使 RabbitMQ 服务器重启,消息也不会丢失。
-
持久化队列(Durable Queue):创建队列时,将队列的 durable 参数设置为 true,即可创建一个持久化队列。持久化队列会将队列的元数据和消息都存储在磁盘上,即使消息队列服务器重启,队列的元数据和消息仍然可以恢复。
-
确认模式(Publisher Confirms):使用确认模式可以确保消息被成功发送到 RabbitMQ 服务器,并得到确认。通过在信道上使用 channel.confirmSelect() 启用确认模式,然后通过 channel.waitForConfirms() 方法来等待服务器的确认。
-
事务模式(Transactions):使用事务模式可以保证消息的原子性,要么全部发送成功,要么全部失败。通过在信道上使用 channel.txSelect() 开启事务模式,在发送消息后使用 channel.txCommit() 提交事务,或使用 channel.txRollback() 进行回滚。
-
消费者应答(Consumer Acknowledgement):在消费者接收和处理消息后,必须发送确认应答给 RabbitMQ 服务器。通过使用 channel.basicAck() 方法发送确认应答,以告知服务器消息已经成功处理。
通过使用上述机制,可以在 RabbitMQ 中实现消息的可靠性传输和处理,以防止消息的丢失和重复传递。
这里有篇博客,大家可以看看。
2.持久化机制
在RabbitMQ中,消息持久化是一种机制,可以确保消息在服务器宕机或重启之后不丢失。默认情况下,RabbitMQ的消息是存储在内存中的,如果服务器宕机,则会导致消息的丢失。要实现消息的持久化,可以采取以下步骤:
-
创建一个持久化的交换机(Exchange):
在定义交换机时,将其durable参数设置为true,例如:
channel.exchangeDeclare("exchange_name", "direct", true);
-
创建一个持久化的队列(Queue):
在定义队列时,将其durable参数设置为true,例如:
channel.queueDeclare("queue_name", true, false, false, null);
-
将持久化的队列与交换机进行绑定:
使用队列和交换机的bind方法进行绑定,例如:
channel.queueBind("queue_name", "exchange_name", "routing_key");
-
发布持久化的消息:
在发布消息时,将消息的deliveryMode属性设置为2,表示消息是持久化的,例如:
String message = "Hello RabbitMQ!"; channel.basicPublish("exchange_name", "routing_key", MessageProperties.PERSISTENT_TEXT_PLAIN, message.getBytes());
通过以上步骤,就可以实现消息的持久化。当RabbitMQ服务器宕机或重启后,消息会被保存在磁盘中,并在服务器恢复后重新投递给消费者。需要注意的是,虽然消息被持久化了,但是在发送到队列之前,仍然有可能发生丢失,所以在实际的应用中,还需要考虑一些因素,比如网络故障、消费者的可靠性等。
3.消息积压
批量消费:增加 prefetch 的数量,提高单次连接的消息数
为了提高消费性能,可以将多个消息批量进行消费,减少消费者和消息队列的交互次数。通过设置合适的批量消费大小,可以在一次网络往返中消费多个消息,从而提高消费性能。
要实现RabbitMQ的批量消费,可以使用RabbitMQ的channel.basicQos方法来设置每次消费的消息数量。以下是一个示例代码,演示如何实现批量消费:
import pika def callback(ch, method, properties, body): print("Received message: %s" % body) # 处理消息的逻辑 # 发送确认给RabbitMQ ch.basic_ack(delivery_tag=method.delivery_tag) def consume_messages(): connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() # 设置每个消费者一次性获取的消息数量 channel.basic_qos(prefetch_count=10) # 注册消费者并开始消费消息 channel.basic_consume(queue='my_queue', on_message_callback=callback) # 进入一个循环,一直等待消息的到来 channel.start_consuming() consume_messages()
在上面的代码中,我们通过channel.basic_qos(prefetch_count=10)设置每次处理的消息数量为10。这样,在消费者处理完10条消息之前,RabbitMQ将不会再向其发送更多消息。
这样,就实现了RabbitMQ的批量消费。你可以根据需求,在basic_qos方法中设置适合你的消息数量。
并发消费:多部署几台消费者实例
可以采用多线程或多进程的方式进行消息的并发消费,将多个消费者并行处理消息。通过增加并发消费者的数量,可以提高消息的处理速度,提高消费的性能。
使用进程池来消费RabbitMQ的消息可以更好地管理并发性能。通过使用进程池,可以在一个固定的池子中创建多个进程,并且复用它们来消费消息,从而减少进程创建和销毁的开销。
以下是一个使用进程池消费RabbitMQ消息的示例:
import multiprocessing import os import time import pika def consumer(queue_name): connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.queue_declare(queue=queue_name) def callback(ch, method, properties, body): print(f'Process {os.getpid()} received message: {body}') time.sleep(1) channel.basic_consume(queue=queue_name, on_message_callback=callback, auto_ack=True) channel.start_consuming() def main(): # 创建进程池 pool = multiprocessing.Pool(processes=5) # 在进程池中提交任务 for _ in range(5): pool.apply_async(consumer, ('my_queue',)) pool.close() pool.join() if __name__ == '__main__': main()
在上述示例中,我们使用multiprocessing.Pool来创建一个包含5个进程的进程池。然后,我们使用apply_async方法向进程池中提交任务,每个任务都是调用consumer函数来消费"my_queue"队列中的消息。进程池会自动分配任务给闲置的进程来处理。通过close和join方法,我们可以确保所有任务都被完成。
4.重复消费
-
消息确认:在消费者处理完一条消息后,通过调用basic_ack方法手动确认消息已经成功消费。这样,RabbitMQ就会将该消息标记为已经处理,不会再次发送给其他消费者。同时,还可以设置auto_ack参数为False,禁用自动消息确认机制,以确保消息被正确确认。
-
消息持久化:可以通过设置消息的delivery_mode属性为2来将消息标记为持久化消息。这样,即使消费者在处理消息时发生故障,消息也会被保存在磁盘上,待消费者恢复正常后会重新投递。
-
唯一消费者:可以通过设置队列的exclusive参数为True,创建一个排他队列。这样,只有一个消费者可以连接到该队列,并独占地消费其中的消息,避免重复消费。
-
消息去重:在消费者端可以维护一个已消费消息的记录,例如在数据库或缓存中记录已消费的消息的ID或唯一标识。每次消费消息时,先检查记录中是否已经存在该消息,如果存在则跳过,避免重复处理。
-
幂等操作:在消费者的处理逻辑中,要确保操作是幂等的,即多次执行同一个操作的效果和执行一次的效果是一样的。这样,即使消息被重复消费,也不会产生副作用。
二、其他
1.队列存在大量unacked数据
通过rabbitmq的后台管理,进入相应的队列,滑到最下边,找到purge。purge将清空这个队列的消息。
2.断线重连
方式一
这里可以使用retry在消费者函数consume加装饰器。
import pika from retry import retry @retry(pika.exceptions.AMQPConnectionError, delay=5, jitter=(1, 3)) def consume(self, callback): """Start consuming AMQP messages in the current process""" try: self.start_consuming_message() # 不恢复被rabbitmq服务器关闭的连接 except pika.exceptions.ConnectionClosedByBroker: pass
不用retry的可以手动获取异常,添加重连方法
from mq.rabbitmq_base import Rabbitmq class MqCastComparisonAlgorithm(Rabbitmq): @func_timer def on_message(self, ch, method, properties, body): eventsDelivery = set() eventsDelivery.add(config.Arim_Plan_Send) eventsDelivery.add(config.Arim_SlabMatching_Start) eventsDelivery.add(config.Arim_RollPlan_Rescheduled_Redis) try: print('算法事件:', method.routing_key) pass except Exception as e: print("算法出现异常: {}".format(e)) finally: ch.basic_ack(delivery_tag=method.delivery_tag) def CastComparisonAlgorithm_consume_task(queue_oname, exchange, route_key): mq = MqCastComparisonAlgorithm(queue_oname, exchange, route_key, is_use_rabbitpy=1) try: mq.start_consuming_message() except ConnectionClosed as e: print('异常断开时,重新建立消费者') mq.reconnect(queue_oname, exchange, route_key, is_use_rabbitpy=1) mq.start_consuming_message() except ChannelClosed as e: print('异常断开时,重新建立消费者') mq.reconnect(queue_oname, exchange, route_key, is_use_rabbitpy=1) mq.start_consuming_message()
方式二
这个需要开启链接断开的重试,属于ConnectionParameters的retry_delay和connection_attempts参数。消费ack确认前连接异常断开时。
connectionParameters = pika.ConnectionParameters( host='localhost', virtual_host=5672, credentials=credentials, socket_timeout=10, heartbeat=0, retry_delay=10, # 连接尝试重连间隔 connection_attempts=10, # 连接尝试次数 )
3.rabbitmq心跳连接
RabbitMQ 心跳是一种保持连接活跃的机制。当 RabbitMQ 与客户端建立连接后,它会定期发送心跳包来确认连接仍然有效。如果在一段时间内没有收到心跳回复,RabbitMQ 将会关闭连接。心跳属于ConnectionParameters参数heartbeat,我理解是应该用于生产者,确保能够成功发送消息,如果消费者中设置了heartbeat,一定要大于消费程序的处理时间,保证消费期间结束后,可以响应心跳。
parameters = pika.ConnectionParameters(host, int(port), '/', credentials=userx, heartbeat=int(heartbeat))
如果消费者使用心跳,还可以参考这个博客
-
猜你喜欢
网友评论
- 搜索
- 最新文章
- 热门文章