上海古都建筑设计集团,上海办公室装修设计公司,上海装修公司高质量的内容分享社区,上海装修公司我们不是内容生产者,我们只是上海办公室装修设计公司内容的搬运工平台

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver

guduadmin11天前

一、背景

kerberos认证是比较底层的认证,掌握好了用起来比较简单。

kettle完成kerberos认证后会存储认证信息在jvm中,之后直接连接hive就可以了无需提供额外的用户信息。

spark thriftserver本质就是通过hive jdbc协议连接并运行spark sql任务。

二、思路

kettle中可以使用js调用java类的方法。编写一个jar放到kettle的lib目录下并。在启动kettle后会自动加载此jar中的类。编写一个javascript转换完成kerbero即可。

二、kerberos认证模块开发

准备使用scala语言完成此项目。

hadoop 集群版本: cdh-6.2.0

kettle 版本: 8.2.0.0-342

2.1 生成kerberos工具jar包

2.1.1 创建maven项目并编写pom

创建maven项目,这里依赖比较多觉得没用的删掉即可:

注意:这里为了便于管理,很多包都是compile,最后通过maven-assembly-plugin复制到zip文件中!!!

  
    8
    8
    UTF-8
    2.11.12
    2.11
    1.8
    3.0.0-cdh6.2.0
    2.4.0-cdh6.2.0
    2.1.1-cdh6.2.0
    3.4.5-cdh6.2.0
    2.14.2
    5.2.1
  
  
  
    
      org.scala-lang
      scala-library
      ${scala.version}
      compile
    
    
      org.scala-lang
      scala-reflect
      ${scala.version}
      compile
    
    
      org.scala-lang
      scala-compiler
      ${scala.version}
      compile
    
    
      org.slf4j
      slf4j-api
      1.7.28
      provided
    
    
    
      org.apache.logging.log4j
      log4j-slf4j-impl
      2.9.1
      provided
    
    
    
      org.apache.logging.log4j
      log4j-api
      2.11.1
      provided
    
    
      org.apache.logging.log4j
      log4j-core
      2.11.1
      provided
    
    
      org.apache.hadoop
      hadoop-common
      ${hadoop.version}
      compile
    
    
      org.apache.hadoop
      hadoop-client
      ${hadoop.version}
      compile
    
    
      org.apache.spark
      spark-core_${scala.major.version}
      ${spark.version}
      provided
    
    
      org.apache.spark
      spark-sql_${scala.major.version}
      ${spark.version}
      provided
    
    
      org.apache.spark
      spark-streaming_${scala.major.version}
      ${spark.version}
      provided
    
    
      org.apache.hive
      hive-jdbc
      ${hive.version}
      compile
    
    
      org.apache.spark
      spark-hive-thriftserver_${scala.major.version}
      ${spark.version}
      compile
    
    
    
      org.apache.zookeeper
      zookeeper
      ${zookeeper.version}
      compile
    
    
    
      com.fasterxml.jackson.core
      jackson-core
      ${jackson.version}
      compile
    
    
    
      com.fasterxml.jackson.core
      jackson-databind
      ${jackson.version}
      compile
    
    
    
      com.fasterxml.jackson.dataformat
      jackson-dataformat-xml
      ${jackson.version}
      compile
    
    
    
      com.fasterxml.jackson.module
      jackson-module-scala_2.11
      ${jackson.version}
      compile
    
    
    
      org.junit.jupiter
      junit-jupiter-api
      5.6.2
      test
    
    
      org.scalatest
      scalatest_2.11
      3.2.8
      test
    
    
    
      org.scalactic
      scalactic_2.12
      3.2.8
      test
    
    
    
      org.projectlombok
      lombok
      1.18.14
      provided
    
  
  
    
      
        net.alchim31.maven
        scala-maven-plugin
        4.5.6
        
        
        
          
            scala-compiler
            process-resources
            
              add-source
              compile
            
          
          
            scala-test-compiler
            process-test-resources
            
              add-source
              testCompile
            
          
        
      
      
      
        org.apache.maven.plugins
        maven-surefire-plugin
        2.7
        
          true
        
      
      
      
        org.scalatest
        scalatest-maven-plugin
        2.2.0
        
          ${project.build.directory}/surefire-reports
          .
          WDF TestSuite.txt
        
        
          
          
        
      
      
        org.apache.maven.plugins
        maven-assembly-plugin
        3.0.0
        
          false



          
            src/assembly/assembly.xml
          
          
            
            
            
            
          
        
        
          
            make-assembly
            package
            
              single
            
          
        
      
    
  
  
    
      cloudera
      cloudera
      https://repository.cloudera.com/artifactory/cloudera-repos/
    
  

新建一个空白的xml文件,如下图:

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第1张

maven-assembly-plugin插件会使用到assembly.xml,粘贴如下内容,至assembly.xml文件中,再修改下 自己的项目groupid。


  appserverB
  
    zip
  
  
    
      /ext-lib
      
        org.apache.hadoop:*
        org.apache.hive:*
        org.apache.hive.shims:*
        org.apache.spark:spark-hive-thriftserver_*
        org.apache.zookeeper:*
        org.apache.curator:*
        org.apache.commons:commons-lang3
        org.apache.commons:commons-configuration2
        org.apache.commons:commons-math3
        com.fasterxml.jackson.core:*
        com.fasterxml.jackson.dataformat:*
        com.fasterxml.jackson.module:*
        org.scala-lang:*
        org.apache.thrift:libthrift
        com.thoughtworks.paranamer:paranamer
        com.google.re2j:re2j
        com.fasterxml.woodstox:woodstox-core
        org.codehaus.woodstox:stax2-api
        org.apache.httpcomponents.core5:*
        org.apache.httpcomponents.client5:*
        org.apache.htrace:*
        com.github.rholder:guava-retrying
        org.eclipse.jetty:jetty-util
        org.mortbay.jetty:*
        自己的项目groupid:*
      
    
  

2.1.2 编写类

KerberosConf 暂时没啥用。

case class KerberosConf(principal: String, keyTabPath: String, conf: String="/etc/krb5.conf")

ConfigUtils 类用于生成hadoop 的Configuration,kerberos认证的时候会用到。

import org.apache.commons.lang3.StringUtils
import org.apache.hadoop.conf.Configuration
import java.io.FileInputStream
import java.nio.file.{Files, Paths}
object ConfigUtils {
  val LOGGER = org.slf4j.LoggerFactory.getLogger(KerberosUtils.getClass)
  var hadoopConfiguration: Configuration = null
  var hiveConfiguration: Configuration = null
  private var hadoopConfDir: String = null
  private var hiveConfDir: String = null
  def setHadoopConfDir(dir: String): Configuration = {
    hadoopConfDir = dir
    refreshHadoopConfig
  }
  def getHadoopConfDir: String = {
    if (StringUtils.isEmpty(hadoopConfDir)) {
      val tmpConfDir = System.getenv("HADOOP_CONF_DIR")
      if (StringUtils.isNotEmpty(tmpConfDir) && fileOrDirExists(tmpConfDir)) {
        hadoopConfDir = tmpConfDir
      } else {
        val tmpHomeDir = System.getenv("HADOOP_HOME")
        if (StringUtils.isNotEmpty(tmpHomeDir) && fileOrDirExists(tmpHomeDir)) {
          val tmpConfDirLong = s"${tmpHomeDir}/etc/hadoop"
          val tmpConfDirShort = s"${tmpHomeDir}/conf"
          if (fileOrDirExists(tmpConfDirLong)) {
            hadoopConfDir = tmpConfDirLong
          } else if (fileOrDirExists(tmpConfDirShort)) {
            hadoopConfDir = tmpConfDirShort
          }
        }
      }
    }
    LOGGER.info(s"discover hadoop conf from : ${hadoopConfDir}")
    hadoopConfDir
  }
  def getHadoopConfig: Configuration = {
    if (hadoopConfiguration == null) {
      hadoopConfiguration = new Configuration()
      configHadoop()
    }
    hadoopConfiguration
  }
  def refreshHadoopConfig: Configuration = {
    hadoopConfiguration = new Configuration()
    configHadoop()
  }
  def configHadoop(): Configuration = {
    var coreXml = ""
    var hdfsXml = ""
    val hadoopConfDir = getHadoopConfDir
    if (StringUtils.isNotEmpty(hadoopConfDir)) {
      val coreXmlTmp = s"${hadoopConfDir}/core-site.xml"
      val hdfsXmlTmp = s"${hadoopConfDir}/hdfs-site.xml"
      val coreExists = fileOrDirExists(coreXmlTmp)
      val hdfsExists = fileOrDirExists(hdfsXmlTmp)
      if (coreExists && hdfsExists) {
        LOGGER.info(s"discover hadoop conf from hadoop conf dir: ${hadoopConfDir}")
        coreXml = coreXmlTmp
        hdfsXml = hdfsXmlTmp
        hadoopAddSource(coreXml, hadoopConfiguration)
        hadoopAddSource(hdfsXml, hadoopConfiguration)
      }
    }
    LOGGER.info(s"core-site path : ${coreXml}, hdfs-site path : ${hdfsXml}")
    hadoopConfiguration
  }
  def getHiveConfDir: String = {
    if (StringUtils.isEmpty(hiveConfDir)) {
      val tmpConfDir = System.getenv("HIVE_CONF_DIR")
      if (StringUtils.isNotEmpty(tmpConfDir) && fileOrDirExists(tmpConfDir)){
        hiveConfDir = tmpConfDir
      } else {
        val tmpHomeDir = System.getenv("HIVE_HOME")
        if (StringUtils.isNotEmpty(tmpHomeDir) && fileOrDirExists(tmpHomeDir)) {
          val tmpConfDirShort = s"${tmpHomeDir}/conf}"
          if (fileOrDirExists(tmpConfDir)) {
            hiveConfDir = tmpConfDirShort
          }
        }
      }
    }
    LOGGER.info(s"discover hive conf from : ${hiveConfDir}")
    hiveConfDir
  }
  def configHive(): Configuration = {
    if (hiveConfiguration != null) {
      return hiveConfiguration
    } else {
      hiveConfiguration = new Configuration()
    }
    var hiveXml = ""
    val hiveConfDir = getHiveConfDir
    if (StringUtils.isEmpty(hiveConfDir)) {
      val hiveXmlTmp = s"${hiveConfDir}/hive-site.xml"
      val hiveExist = fileOrDirExists(hiveXml)
      if (hiveExist) {
        LOGGER.info(s"discover hive conf from : ${hiveConfDir}")
        hiveXml = hiveXmlTmp
        hadoopAddSource(hiveXml, hiveConfiguration)
      }
    }
    LOGGER.info(s"hive-site path : ${hiveXml}")
    hiveConfiguration
  }
  def getHiveConfig: Configuration = {
    if (hiveConfiguration == null) {
      hiveConfiguration = new Configuration()
      configHive()
    }
    hiveConfiguration
  }
  def refreshHiveConfig: Configuration = {
    hiveConfiguration = new Configuration()
    configHive()
  }
  def hadoopAddSource(confPath: String, conf: Configuration): Unit = {
    val exists = fileOrDirExists(confPath)
    if (exists) {
      LOGGER.warn(s"add [${confPath} to hadoop conf]")
      var fi: FileInputStream = null
      try {
        fi = new FileInputStream(confPath)
        conf.addResource(fi)
        conf.get("$$")
      } finally {
        if (fi != null) fi.close()
      }
    } else {
      LOGGER.error(s"[${confPath}] file does not exists!")
    }
  }
  def toUnixStyleSeparator(path: String): String = {
    path.replaceAll("\\\\", "/")
  }
  def fileOrDirExists(path: String): Boolean = {
    Files.exists(Paths.get(path))
  }
}

KerberosUtils 就是用于认证的类。

import org.apache.commons.lang3.StringUtils
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.security.UserGroupInformation
import org.apache.kerby.kerberos.kerb.keytab.Keytab
import org.slf4j.Logger
import java.io.File
import java.net.URL
import java.nio.file.{Files, Paths}
import scala.collection.JavaConversions._
import scala.collection.JavaConverters._
object KerberosUtils {
  val LOGGER: Logger = org.slf4j.LoggerFactory.getLogger(KerberosUtils.getClass)
  def loginKerberos(krb5Principal: String, krb5KeytabPath: String, krb5ConfPath: String, hadoopConf: Configuration): Boolean = {
    val authType = hadoopConf.get("hadoop.security.authentication")
    if (!"kerberos".equalsIgnoreCase(authType)) {
      LOGGER.error(s"kerberos utils get hadoop authentication type [${authType}] ,not kerberos!")
    } else {
      LOGGER.info(s"kerberos utils get hadoop authentication type [${authType}]!")
    }
    UserGroupInformation.setConfiguration(hadoopConf)
    System.setProperty("java.security.krb5.conf", krb5ConfPath)
    System.setProperty("javax.security.auth.useSubjectCredsOnly", "false")
    UserGroupInformation.loginUserFromKeytab(krb5Principal, krb5KeytabPath)
    val user = UserGroupInformation.getLoginUser
    if (user.getAuthenticationMethod == UserGroupInformation.AuthenticationMethod.KERBEROS) {
      val usnm: String = user.getShortUserName
      LOGGER.info(s"kerberos utils login success, curr user: ${usnm}")
      true
    } else {
      LOGGER.info("kerberos utils login failed")
      false
    }
  }
  def loginKerberos(krb5Principal: String, krb5KeytabPath: String, krb5ConfPath: String): Boolean = {
    val hadoopConf = ConfigUtils.getHadoopConfig
    loginKerberos(krb5Principal, krb5KeytabPath, krb5ConfPath, hadoopConf)
  }
  def loginKerberos(kerberosConf: KerberosConf): Boolean = {
    loginKerberos(kerberosConf.principal, kerberosConf.keyTabPath, kerberosConf.conf)
  }
  def loginKerberos(krb5Principal: String, krb5KeytabPath: String, krb5ConfPath: String,hadoopConfDir:String):Boolean={
    ConfigUtils.setHadoopConfDir(hadoopConfDir)
    loginKerberos(krb5Principal,krb5KeytabPath,krb5ConfPath)
  }
  def loginKerberos(): Boolean = {
    var principal: String = null
    var keytabPath: String = null
    var krb5ConfPath: String = null
    val classPath: URL = this.getClass.getResource("/")
    val classPathObj = Paths.get(classPath.toURI)
    var keytabPathList = Files.list(classPathObj).iterator().asScala.toList
    keytabPathList = keytabPathList.filter(p => p.toString.toLowerCase().endsWith(".keytab")).toList
    val krb5ConfPathList = keytabPathList.filter(p => p.toString.toLowerCase().endsWith("krb5.conf")).toList
    if (keytabPathList.nonEmpty) {
      val ktPath = keytabPathList.get(0)
      val absPath = ktPath.toAbsolutePath
      val keytab = Keytab.loadKeytab(new File(absPath.toString))
      val pri = keytab.getPrincipals.get(0).getName
      if (StringUtils.isNotEmpty(pri)) {
        principal = pri
        keytabPath = ktPath.toString
      }
    }
    if (krb5ConfPathList.nonEmpty) {
      val confPath = krb5ConfPathList.get(0)
      krb5ConfPath = confPath.toAbsolutePath.toString
    }
    if (StringUtils.isNotEmpty(principal) && StringUtils.isNotEmpty(keytabPath) && StringUtils.isNotEmpty(krb5ConfPath)) {
      ConfigUtils.configHadoop()
      // ConfigUtils.configHive()
      val hadoopConf = ConfigUtils.hadoopConfiguration
      loginKerberos(principal, keytabPath, krb5ConfPath, hadoopConf)
    } else {
      false
    }
  }
}
2.1.3 编译打包

mvn package 后maven-assembly-plugin会在target/生成出一个zip包。zip包最里层的各种jar就是需要的jar包了,将这些jar包都放到 kettle 的lib目录或自定义的目录(自定义方法请看下文)就好。

注意:

(1)本例中的kettle8.2中的KETTLE_HOME/plugins\pentaho-big-data-plugin\hadoop-configurations 目录下有几个hadoop plugin,在kettle9之前的版本全局只能有一个hadoop,选择使用哪个hadoop需要在文件KETTLE_HOME/plugins\pentaho-big-data-plugin\plugin.properties的active.hadoop.configuration=...配置,就是文件夹的名字,比如此次配置hdp30作为hadoop plugin 基础的hadoop版本,注kettle9以后的版本不是这么配置的,这个hadoop版本越接近实际集群的版本越好,kettle每次此启动都尝试加载此目录下的类,不一样也可以!!!

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第2张

(2)由于集群版本可能和任何上边的hadoop plugin都不一致,此时需要把集群版本的依赖jar包提前加载,所以需要把相关依赖放在KETTLE_HOME/lib下,如果想放在另设目录比如KETTLE_HOME/ext-lib。win下可以把Spoon.bat中的两处set LIBSPATH=后都追加;..\ext-lib,注意是分号分隔。当然linux下,修改spoon.sh在LIBPATH=$CURRENTDIR最后都追加:..\ext-lib,注意是冒号分隔,之所有要有..是因为项目启动类是KETTLE_HOME/launcher\launcher.jar中。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第3张

类和包报错说明:

报错一:

kettle8.2报错很难理解,9之后的版本好得多:如下内容实际Watcher类找不到,但实际是有的。

2024/01/03 17:34:01 - spark-read-ha-sample.0 - Error connecting to database: (using class org.apache.hive.jdbc.HiveDriver)
2024/01/03 17:34:01 - spark-read-ha-sample.0 - org/apache/zookeeper/Watcher

报错二:

出现这种问题的是也是java类加载错误,应该是不同的classloader加载类导致不识别。

loader constraint violation: loader (instance of java/net/URLClassLoader) previously initiated loading for a different type with name "org/apache/curator/RetryPolicy"

报错三:

出现此问题,暂时无法解释。

java.lang.IllegalArgumentException: port out of range:-1
        at java.net.InetSocketAddress.checkPort(InetSocketAddress.java:143)
        at java.net.InetSocketAddress.createUnresolved(InetSocketAddress.java:254)
        at org.apache.zookeeper.client.ConnectStringParser.(ConnectStringParser.java:76)
        at org.apache.zookeeper.ZooKeeper.(ZooKeeper.java:447)
        at org.apache.curator.utils.DefaultZookeeperFactory.newZooKeeper(DefaultZookeeperFactory.java:29)
        at org.apache.curator.framework.imps.CuratorFrameworkImpl$2.newZooKeeper(CuratorFrameworkImpl.java:150)
        at org.apache.curator.HandleHolder$1.getZooKeeper(HandleHolder.java:94)
        at org.apache.curator.HandleHolder.getZooKeeper(HandleHolder.java:55)
        at org.apache.curator.ConnectionState.reset(ConnectionState.java:262)
        at org.apache.curator.ConnectionState.start(ConnectionState.java:109)
        at org.apache.curator.CuratorZookeeperClient.start(CuratorZookeeperClient.java:191)
        at org.apache.curator.framework.imps.CuratorFrameworkImpl.start(CuratorFrameworkImpl.java:259)
        at org.apache.hive.jdbc.ZooKeeperHiveClientHelper.configureConnParams(ZooKeeperHiveClientHelper.java:63)
        at org.apache.hive.jdbc.Utils.configureConnParams(Utils.java:520)
        at org.apache.hive.jdbc.Utils.parseURL(Utils.java:440)
        at org.apache.hive.jdbc.HiveConnection.(HiveConnection.java:134)
        at org.apache.hive.jdbc.HiveDriver.connect(HiveDriver.java:107)

以上三个问题的解决方法是:

将hadoop,hive,zookeeper 和 curator包都放在lib目录或自定义加载目录!!!虽然KETTLE_HOME\plugins\pentaho-big-data-plugin\hadoop-configurations 目录下选定的hadoop plugin (本例中是hdp30)也有相关依赖,但实际上lib目录和hadoop plugin类不能混用,相关的包必须放在一起,切记,血泪教训!!!不用管lib目录和hadoop plugin中存在不同版本的jar包!!!

由于kettle设计的比较负责支持很多插件,此问题应该是由于不同进程不同类加载器所加载的类不能通用所致。

2.2 启动kettle和类加载说明

debug模式启动:SpoonDebug.bat

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第4张如果还想看类加载路径可以在Spoon.bat中的set OPT= 行尾添加jvm选项 "-verbose:class" 。

如果cmd黑窗口中文乱码可以把SpoonDebug.bat中的 "-Dfile.encoding=UTF-8" 删除即可。

kettle会把所有jar包都缓存,都存储在kettle-home\system\karaf\caches目录下。

日志里打印的所有 bundle数字目录下得jar包都是在缓存目录下。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第5张如果kettle在运行过程中卡掉了,不反应了,八成是因为操作过程中点击了cmd黑窗口,此时在cmd黑窗口内敲击回车,cmd日志就会继续打印,窗口也会恢复响应。

2.3 编写js通过kerberos认证

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第6张

配置信息就是填写kerberos的配置。

javascript代码完成kerberos认证。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第7张配置信息内填写如下:

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第8张javascript代码内容如下:

kerberos认证中是需要HADOOP_CONF_DIR的,如果调用没有hadoop_conf_dir参数据方法就是去环境变量中取了。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第9张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第10张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第11张

// 给类起个别名,java没有这种写法,python有。
var utils = Packages.全类路径.KerberosUtils;
// 使用 HADOOP_CONF_DIR 或 HADOOP_HOME 环境变量,配置登录 Kerberos
var loginRes = utils.loginKerberos(krb5_principal,krb5_keytab,krb5_conf);
// 使用用户提供的 hadoop_conf_dir 登录kerberos
// hadoop_conf_dir 参数可以从上一步获取,也可以直接写死。
// var loginRes = utils.loginKerberos(krb5_principal,krb5_keytab,krb5_conf,hadoop_conf_dir);

添加一个写结果的模块!

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第12张

好了,执行启动!

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第13张

如果报如下错误,说明kettle没有找到java类,检查类路径和包是否错误!

TypeError: Cannot call property loginKerberos in object [JavaPackage utils]. It is not a function, it is "object". (script#6)

如果打印如下内容,说明执行认证成功了。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第14张

2024/01/02 18:18:04 - 写日志.0 -
2024/01/02 18:18:04 - 写日志.0 - ------------> 行号 1------------------------------
2024/01/02 18:18:04 - 写日志.0 - loginRes = Y

三、包装模块开发

keberos认证会在jvm存储信息,这些信息如果想使用必须前于hive或hadoop任务一个job

结构如下:

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第15张kerberos-login 就是刚刚写的转换。

必须如上包装,层数少了,认证不过去!!!

四、连接hdfs

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第16张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第17张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第18张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第19张如果项目中使用也必须使用前面的包装模块把hadoop任务包在里边!

五、连接hive或者spark thriftserver

连接hive和spark thriftserver是一样的。以下以spark举例说明。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第20张

注意连接hive或者spark之前一定先手动运行下刚刚的kerberos-login认证模块!!!,否则测试连接和特征列表都将就失败或报错!!!

4.1 zookeeper的ha方式连接

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第21张

# 主机名称:
# 注意这里主机名会后少写一个:2181
zk-01.com:2181,zk-02.com:2181,zk-03.com
# 数据库名称:
# 后边把kerberos连接参数也加上。zooKeeperNamespace 参数从HIVE_HOME/conf/hive-site.xml或SPARK_HOME/conf/hive-site.xml文件获取即可。而serviceDiscoveryMode=zooKeeper是固定写法。
default;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=spark2_server
# 端口号:
# 主机名故意少写一个,就在这里补上了。
2181

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第22张先手动运行下kerberos认证模块,再测试连接下:

填写完毕后,可以点击特征列表按钮,找到URL项查看格式,应为

jdbc:hive2://zk-01.com:2181,zk-01.com:2181,zk-01.com:2181/default;serviceDiscoveryMode=zooKeeper;zooKeeperNamespace=...

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第23张测试连接:

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第24张

4.2 单点连接方式

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第25张

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第26张

# 主机名称
# 就是hive server2 的主机 host,不要写IP
# 数据库名称:
# HIVE_HOME/conf/hive-site.xml或SPARK_HOME/conf/hive-site.xml中找到配置 hive.server2.authentication.kerberos.principal 
# 比如spark/_HOST@XXXXX.COM
# 本质也是在default数据库后边拼接连接字符串
default;principal=spark/_HOST@XXXXX.COM
# 端口号也在SPARK_HOME/conf/hive-site.xml中找到配置hive.server2.thrift.port有
10016

填写完毕后,可以点击特征列表按钮,找到URL项查看格式,应为:jdbc:hive2://host:port/default;principal=... 格式。

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第27张

测试连接:

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第28张

五、其他

kettle读取Hive表不支持bigint和timstamp类型解决

六 kettle使用技巧

6.1 kettle 任务嵌套使用相对目录

【kettle】pdidata-integration 集成kerberos认证连接hdfs、hive或spark thriftserver,在这里插入图片描述,第29张

以上内容殊荣输入也是可以的:${Internal.Entry.Current.Directory} 。

参考文章:

hive 高可用详解: Hive MetaStore HA、hive server HA原理详解;hive高可用实现

kettle开发篇-JavaScript脚本-Day31

kettle组件javaScript脚本案例1

kettle配置javascript环境 kettle javascript

Javascript脚本组件

Kettle之【执行SQL脚本】控件用法 文章介绍了环境变量和 占位符 ? 的使用方法。

网友评论

搜索
最新文章
热门文章
热门标签