pydantic 概述
pydantic 库是 python 中用于数据接口定义检查与设置管理的库。
pydantic 在运行时强制执行类型提示,并在数据无效时提供友好的错误。
具有如下优点:
- 易于使用: Pydantic 很容易安装与使用,并且有一个简单的 API,使得所有开发者都可以快速上手使用。
- 快速验证: Pydantic 快速有效地执行数据验证,使其适合于在高性能的应用程序中使用。
- 自动生成文档: Pydantic 可以为数据模型自动生成文档,节省时间,并且更容易的理解数据结构。
- 类型提示支持: Pydantic 支持类型提示,使开发人员更容易定义数据结构,避免在代码中出现错误。
- 与 FastAPI 集成: Pydantic 可以很容易地与 FastAPI(一个高性能的 Python 网络框架)集成,为 API 提供自动请求和响应验证。
- 自定义验证规则: Pydantic 允许开发人员定义自定义的验证规则,使得在需要的时候可以实现复杂的验证逻辑。
- 一致的数据: Pydantic 确保项目中使用的数据是一致的,并符合所需的标准,减少了错误的风险,使代码库的维护更加容易。
- 与 IDE/linter 完美搭配,不需要学习新的模式,只是使用类型注解定义类的实例
- 多用途,BaseSettings 既可以验证请求数据,也可以从环境变量中读取系统设置
- 可扩展,可以使用 validator 装饰器装饰的模型上的方法来扩展验证
- 数据类集成,dataclass 装饰器可以创建带有输入数据解析和验证的普通 Python 数据类。
Pydantic 的工作方式
- Pydantic 的工作方式是允许开发人员使用 Python 类来定义数据模型。这些类继承自 Pydantic 提供的 BaseModel 类,可以包括类型提示、默认值和验证规则。当收到数据时,Pydantic 使用数据模型来验证传入的数据,并确保其符合所定义的要求。
- 在验证过程中,Pydantic 对照数据模型中定义的类型提示和验证规则,检查数据中的每个字段。如果数据不符合要求,Pydantic 会提出一个错误,并停止验证过程。如果数据是有效的,Pydantic 就会创建一个数据模型的实例,用传入的数据来填充它,并将其返回给用户。
- Pydantic 还提供了一些高级功能,例如字段别名,自定义验证函数,以及对嵌套数据模型的支持,使得它可以处理广泛的数据验证场景。此外,Pydantic 支持序列化和反序列化,允许根据需要将数据转换为 Python 数据结构、JSON 和其他格式。
环境准备
-
安装 pydantic 命令:pip install pydantic
-
测试 pydantic 是否已编译
import pydantic print('compiled:', pydantic.compiled)
BaseModel(基本模型)
简述
在 Pydantic 中,BaseModel 是一个用于定义数据模型的基类。它允许创建一个描述数据结构、验证数据和进行数据转换的类。BaseModel 基本模型提供了属性和方法来定义字段,校验数据以及序列化数据。
BaseModel 提供的常用功能有:
- 数据验证:当创建模型实例时,Pydantic 会自动验证传入的数据是否满足字段定义的规则。
- 数据转换:Pydantic 会尝试将输入数据转换为模型中定义的字段类型,例如将字符串转换为整数或浮点数。
- 自动文档生成:基于模型的字段定义,Pydantic 可以自动生成文档和模型验证的错误消息。
- 嵌套模型:可以在模型内部使用其他模型,从而创建复杂的数据结构。
- 序列化和反序列化:允许根据需要将数据转换为 Python 数据结构、JSON 和其他格式。
pydantic 和 @dataclass 的异同
pydantic 和 @dataclass 都是用于创建数据类(data class)的工具,它们有一些相似之处,但也有一些重要的区别。
- @dataclass:
- @dataclass 是 Python 标准库中的一个装饰器,自 Python 3.7 引入。
- 它用于创建数据类,可以轻松地定义类的属性,并自动生成常见的特殊方法,如 __init__()、__repr__()、__eq__() 等。
- @dataclass 不提供数据验证功能,仅用于数据类的创建。
- 适用于简单的数据类,不涉及数据验证或输入的复杂处理逻辑。
- pydantic:
- pydantic 是一个用于数据验证和数据解析的 Python 库,它提供了强大的数据验证和输入处理功能。
- 它允许定义模型类,为模型属性添加验证规则,以确保数据的有效性。
- pydantic 支持丰富的验证规则,包括类型检查、最小值、最大值、正则表达式匹配等。
- 适用于需要数据验证和处理的场景,特别是用于处理输入数据、API 请求等情况。
总结:
- 如果只需要创建简单的数据类,并且不需要进行数据验证和处理,那么使用 @dataclass 是一个简单而方便的选择。
- 如果需要对输入数据进行验证,确保数据的有效性,或者处理来自外部系统的复杂数据,那么 pydantic 更适合,因为它提供了更强大的数据验证和处理功能
定义 BaseModel 数据模型
-
在 pydantic 中定义一个对象模型的主要方法是通过模型继承自 BaseModel 类,然后声明属性并显式地注解属性的数据类型。
-
属性可以设置默认值,设置了默认值的属性在创建模型对象时可选传参数,否则为必传参数。
-
支持的数据类型包括 str、int、float、List 等基本数据类型以及其他的 Pydantic 类型,如 EmailStr、UrlStr、PositiveInt 等,来增强字段的验证能力。
-
简单示例
from pydantic import BaseModel class User(BaseModel): id: int name: str = 'Jane Doe' # 创建对象,传参方式1 user = User(id=1) # 创建对象,传参方式2 item_data = { "id": 2, "name": 'aaa' } user_2 = User(**item_data)
BaseModel 常用 API
类属性:
- model_fields:它包含了模型中每个字段的 FieldInfo 对象,以字典的形式存储。FieldInfo 对象提供了有关字段的详细信息,如字段类型、默认值等。
类方法:
- model_construct() :允许在没有验证的情况下创建模型
- model_validate() :用于使用 model 对象或字典创建模型的实例
- model_validate_json() :用于使用 JSON 字符串创建模型的实例
类对象方法:
- model_copy():创建模型的一个副本。
- model_dump():将模型转换为字典,其中包含字段名称和对应的值。
- model_dump_json():将模型转换为 JSON 格式的字符串。
@validator:自定义验证器
-
@validator 装饰器用于在 Pydantic 的 BaseModel 子类中定义验证函数,以在模型创建时自动验证字段的值。
使用 @validator 装饰器可以实现自定义验证和对象之间的复杂关系。
-
@validator 常用的参数和说明:
-
*fields (可变位置参数):要验证的字段名称,可以是一个或多个字段。这些字段的值将作为验证函数的参数传递给验证函数。
传参多个字段需配合 allow_reuse 参数使用
-
allow_reuse(默认为 False):如果设置为 True,则允许验证函数重复使用。
如果多个字段需要相同的验证逻辑,可以将此参数设置为 True 以提高代码的复用性。
@validator("age", "height", allow_reuse=True)
-
each_item (默认为 False):设置验证器是否被施加到单独的值(例如 List,Dict,Set 等),而不是整个对象
-
pre(默认为 False):设置验证函数是在字段验证之前(pre=True)还是之后(pre=False)执行。
通常情况下,会将其保留为默认值 False,以便在字段验证之后执行验证。
-
pre_root(默认为 False):与 pre 参数一起使用,用于在整个模型层次结构中的字段验证之前或之后执行验证函数。
通常情况下,会将其保留为默认值 False,以便在字段验证之后执行验证。
-
always(默认为 False):如果设置为 True,则无论字段是否在模型中被赋值,验证函数都会被执行。
通常情况下,会将其保留为默认值 False,以便只在字段被赋值时执行验证。
-
注意:
- 验证器是“类方法”,因此它们接收的第一个参数值是类(形参 cls),而不是对象(形参 self)
- 第二个参数始终是要验证的字段值,可以随意命名,常用 v
- 单个验证器可以通过传递多个字段名称来应用于多个字段,也可以通过传递特殊值在所有字段上调用单个验证器
-
代码示例
from pydantic import BaseModel, ValidationError, validator class UserModel(BaseModel): name: str names: List[str] @validator('name') def name_must_contain_space(cls, v): if ' ' not in v: raise ValueError('must contain a space') return v.title() @validator('names', each_item=True) def check_names_not_empty(cls, v): assert v != '', 'Empty strings are not allowed.' return v
BaseSettings:管理配置
BaseSettings 基类
-
BaseSettings 是 Pydantic 提供的一个基类,用于管理应用程序的配置设置。
它允许从环境变量、配置文件、命令行参数、Python 常量等多个来源加载配置选项,并进行验证和类型转换。
BaseSettings 的目标是简化配置管理和设置的过程,使得应用程序的配置更加可靠和可维护。
-
基本使用:创建一个继承自 BaseSettings 的模型,模型初始化程序将自动尝试通过从环境变量中读取,来确定未作为关键字参数传递的任何字段的值(如果未设置匹配的环境变量,则仍将使用默认值)
-
注意:
- 在 Pydantic 2.3.0 版本,BaseSettings 的导包路径为(from pydantic.v1 import BaseSettings),或使用独立的 pydantic-settings 包(安装命令:pip install pydantic-settings)
BaseSettings 类的 Config 内部类
-
在 Pydantic 的 BaseSettings 类中,Config 内部类提供了一些属性和配置选项,用于自定义配置的行为。
可以在 Config 类中定义这些属性,以影响配置的加载和验证过程。
-
常用的 Config 配置选项:
-
env_file:指定配置文件( Dotenv 文件)的名称。可以是文件名字符串,用于从指定的文件加载配置。
pydantic 有两种方式加载它:
class Settings(BaseSettings): ... class Config: # 方式1:Settings.Config 类中直接设置默认值 env_file = '.env' # 方式2:实例化BaseSettings子类对象时传参。注意内部类属性在类为传参时加一个下划线(_) settings = Settings(_env_file='prod.env')
注意:
- 使用该配置需要 python-dotenv 包的支持(安装命令:pip install python-dotenv)
- 即使使用 dotenv 文件,pydantic 仍会读取环境变量,环境变量将始终优先于从 dotenv 文件加载的值。
-
env_prefix:配置环境变量的前缀。设置前缀后,Pydantic 将只加载以该前缀开头的环境变量作为配置项。
-
env_file_encoding:指定配置文件的编码。默认是 "utf-8"。
-
case_sensitive:设置为 True 以启用字段名称的大小写敏感性,或设置为 False 以忽略大小写。默认是 False。
-
arbitrary_types_allowed:设置为 True 以允许在配置文件中使用自定义类型。默认是 False。
-
validate_all:是否验证所有字段,而不仅仅是被访问的字段。默认是 True。
-
secrets_dir:设置敏感信息文件目录
即使使用 secrets 目录,pydantic 仍会从 dotenv 文件或环境中读取环境变量,环境变量和dotenv 文件将始终优先于从 secrets 目录加载的值。
这些是一些常用的 Config 配置选项,可以通过在 Settings 类中的 Config 子类中定义来自定义 BaseSettings 的行为。
代码示例
-
#from pydantic import BaseSettings from pydantic.v1 import BaseSettings class Settings(BaseSettings): app_name: str = "My App" api_key: str class Config: env_file = ".env" # 从环境文件加载配置 settings = Settings()
- 定义了一个名为 Settings 的 BaseSettings 子类。在这个类中,声明了两个配置选项:app_name 和 api_key。app_name 有一个默认值,而 api_key 则需要从配置中加载。
- Config 内部类用于配置 BaseSettings 的行为。在这个示例中,使用了 env_file 来指定从名为 .env 的环境文件中加载配置。
- 通过创建 Settings 类的实例,可以轻松地访问配置选项,并自动进行验证和类型转换。如果 api_key 在配置文件中未设置或类型不匹配,Pydantic 将引发相应的异常。
-
-
-
- 在 Pydantic 2.3.0 版本,BaseSettings 的导包路径为(from pydantic.v1 import BaseSettings),或使用独立的 pydantic-settings 包(安装命令:pip install pydantic-settings)
-
-
-
- model_fields:它包含了模型中每个字段的 FieldInfo 对象,以字典的形式存储。FieldInfo 对象提供了有关字段的详细信息,如字段类型、默认值等。
-
- @dataclass:
-
猜你喜欢
- 4小时前Debezium发布历史57
- 4小时前nacos作为注册中心: Application failed to connect to Nacos server: “xxxx“
- 4小时前2023 年,我患上了 AI 焦虑症!
- 4小时前Azure机器学习 - 使用与Azure集成的Visual Studio Code实战教程
- 4小时前Vue3 开发实战分享——打印插件 Print.js 的使用(Vue3 + Nodejs + Print.js 实战)以及 el-table 与 el-pagination 的深入使用(下)
- 4小时前已解决java.lang.NumberFormatException异常的正确解决方法,亲测有效!!!
- 4小时前VR全景直播,打开新视界的大门
- 4小时前Python神器:psutil库使用详解
- 2小时前动车软卧(动车软卧有充电的地方吗)
- 14分钟前记忆海绵(记忆海绵耳塞的利弊)
网友评论
- 搜索
- 最新文章
- 热门文章