上海古都建筑设计集团,上海办公室装修设计公司,上海装修公司高质量的内容分享社区,上海装修公司我们不是内容生产者,我们只是上海办公室装修设计公司内容的搬运工平台

算法(3)——二分查找

guduadmin12小时前

一、什么是二分查找

二分查找也称折半查找,是在一组有序(升序/降序)的数据中查找一个元素,它是一种效率较高的查找方法。

二、二分查找的原理

1、查找的目标数据元素必须是有序的。没有顺序的数据,二分法就失去意义。

2、数据元素通常是数值型,可以比较大小。

3、将目标元素和查找范围的中间值做比较(如果目标元素=中间值,查找结束),将目标元素分到较大/或者较小的一组。

4、通过分组,可以将查找范围缩小一半。

5、重复第三步,直到目标元素=新的范围的中间值,查找结束。

三、二分查找模板 

1、朴素二分查找模板

算法(3)——二分查找,第1张

2、一般二分查找模板算法(3)——二分查找,第2张

四、二分查找经典OJ题

4、1 二分查找

704. 二分查找 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第3张

2、算法思路

a. 定义 left , right 指针,分别指向数组的左右区间。 b. 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:         i. arr[mid] == target 说明正好找到,返回 mid 的值

        ii. arr[mid] > target 说明 [mid, right] 这段区间都是⼤于 target 的,因此舍去右边区间,在左边 [left, mid -1] 的区间继续查找,即让 right = mid - 1 ,然后重复 2 过程;

        iii. arr[mid] < target 说明 [left, mid] 这段区间的值都是⼩于 target 的,因此舍去左边区间,在右边 [mid + 1, right] 区间继续查找,即让 left = mid + 1 ,然后重复 2 过程; c. 当 left 与 right 错开时,说明整个区间都没有这个数,返回 -1 。

3、算法代码

class Solution {
public:
    int search(vector& nums, int target) 
    {
        int left=0,right=nums.size()-1;
        while(left<=right)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>target)
            {
                right=mid-1;
            }
            else if(nums[mid] 

4、2 在排序数组中查找元素的第⼀个和最后⼀个位置

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

1、题目描述:

算法(3)——二分查找,第4张

2、算法思路:

⽤的还是⼆分思想,就是根据数据的性质,在某种判断条件下将区间⼀分为⼆,然后舍去其中⼀个 区间,然后再另⼀个区间内查找; ⽅便叙述,⽤ x 表⽰该元素, resLeft 表⽰左边界, resRight 表⽰右边界。
寻找左边界: ◦ 我们注意到以左边界划分的两个区间的特点: ▪ 左边区间 [left, resLeft - 1] 都是⼩于 x 的; ▪ 右边区间(包括左边界) [resLeft, right] 都是⼤于等于 x 的; • 因此,关于 mid 的落点,我们可以分为下⾯两种情况: ◦ 当我们的 mid 落在 [left, resLeft - 1] 区间的时候,也就是 arr[mid] < target 。说明 [left, mid] 都是可以舍去的,此时更新 left 到 mid + 1 的位置, 继续在 [mid + 1, right] 上寻找左边界; ◦ 当 mid 落在 [resLeft , right] 的区间的时候,也就是 arr[mid] >= target 。 说明 [mid + 1, right] (因为 mid 可能是最终结果,不能舍去)是可以舍去的,此时 更新 right 到 mid 的位置,继续在 [left, mid] 上寻找左边界; • 由此,就可以通过⼆分,来快速寻找左边界;
注意:这⾥找中间元素需要向下取整。 因为后续移动左右指针的时候: • 左指针: left = mid + 1 ,是会向后移动的,因此区间是会缩⼩的; • 右指针: right = mid ,可能会原地踏步(⽐如:如果向上取整的话,如果剩下 1,2 两个元 素, left == 1 , right == 2 , mid == 2 。更新区间之后, left , right , mid 的 值没有改变,就会陷⼊死循环)。 因此⼀定要注意,当 right = mid 的时候,要向下取整。
寻找右边界思路: ◦ ⽤ resRight 表⽰右边界; ◦ 我们注意到右边界的特点: ▪ 左边区间 (包括右边界) [left, resRight] 都是⼩于等于 x 的; ▪ 右边区间 [resRight+ 1, right] 都是⼤于 x 的; • 因此,关于 mid 的落点,我们可以分为下⾯两种情况: ◦ 当我们的 mid 落在 [left, resRight] 区间的时候,说明 [left, mid - 1](mid 不可以舍去,因为有可能是最终结果) 都是可以舍去的,此时更新 left 到 mid 的位置; ◦ 当 mid 落在 [resRight+ 1, right] 的区间的时候,说明 [mid, right] 内的元素 是可以舍去的,此时更新 right 到 mid - 1 的位置; • 由此,就可以通过⼆分,来快速寻找右边界;
注意:这⾥找中间元素需要向上取整。 因为后续移动左右指针的时候: • 左指针: left = mid ,可能会原地踏步(⽐如:如果向下取整的话,如果剩下 1,2 两个元 素, left == 1 , right == 2 , mid == 1 。更新区间之后, left , right , mid 的值 没有改变,就会陷⼊死循环)。 • 右指针: right = mid - 1 ,是会向前移动的,因此区间是会缩⼩的; 因此⼀定要注意,当 right = mid 的时候,要向下取整。

3、算法代码

class Solution {
public:
    vector searchRange(vector& nums, int target) 
    {
        int begin=0;
        if(nums.size()==0) return {-1,-1};
        int left=0,right=nums.size()-1;
        while(right>left)   //找左端点
        {
            int mid=left+(right-left)/2;
            if(nums[mid]left)
        {
            int mid=left+(right-left+1)/2;
            if(nums[mid]<=target) left=mid;
            else right=mid-1;
        }
        return {begin,right};
    }
};

4、3 搜索插入位置

35. 搜索插入位置 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第5张

2、算法思路

a. 分析插⼊位置左右两侧区间上元素的特点: 设插⼊位置的坐标为 index ,根据插⼊位置的特点可以知道: • [left, index - 1] 内的所有元素均是⼩于 target 的; • [index, right] 内的所有元素均是⼤于等于 target 的。 b. 设 left 为本轮查询的左边界, right 为本轮查询的右边界。根据 mid 位置元素的信息,分析下⼀轮查询的区间: ▪ 当 nums[mid] >= target 时,说明 mid 落在了 [index, right] 区间上, mid 左边包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [left, mid] 上。因此,更新 right 到 mid 位置,继续查找。 ▪ 当 nums[mid] < target 时,说明 mid 落在了 [left, index - 1] 区间上, mid 右边但不包括 mid 本⾝,可能是最终结果,所以我们接下来查找的区间在 [mid + 1, right] 上。因此,更新 left 到 mid + 1 的位置,继续查找。 c. 直到我们的查找区间的⻓度变为 1 ,也就是 left == right 的时候, left 或者 right 所在的位置就是我们要找的结果。

3、算法代码

class Solution {
public:
    int searchInsert(vector& nums, int target) 
    {
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left)/2;
            if(nums[mid] 

4、4 X的平方根

69. x 的平方根 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第6张

2、算法思路

依次枚举 [0, x] 之间的所有数 i : (这⾥没有必要研究是否枚举到 x / 2 还是 x / 2 + 1 。因为我们找到结果之后直接就返回 了,往后的情况就不会再判断。反⽽研究枚举区间,既耽误时间,⼜可能出错) ▪ 如果 i * i == x ,直接返回 x ; ▪ 如果 i * i > x ,说明之前的⼀个数是结果,返回 i - 1 。 由于 i * i 可能超过 int 的最⼤值,因此使⽤ long long 类型

3、算法代码

class Solution {
public:
    int mySqrt(int x) 
    {
        if(x<1) return 0;
        int left=1,right=x;
        while(right>left)
        {
            long long mid=left+(right-left+1)/2;
            if(mid*mid>x) right=mid-1;
            else left=mid;
        }
        return left;
    }
};

4、5 山峰数组的峰顶

852. 山脉数组的峰顶索引 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第7张

2、算法思路

峰顶的特点:⽐两侧的元素都要⼤。 因此,我们可以遍历数组内的每⼀个元素,找到某⼀个元素⽐两边的元素⼤即可 3、算法代码
class Solution {
public:
    int peakIndexInMountainArray(vector& arr) 
    {
        for(int i=1;iarr[i-1]&&arr[i]>arr[i+1])
            {
                return i;
            } 
            
        }
        return 0;
    }
};

4、5 寻找峰值   

162. 寻找峰值 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第8张

2、算法思路寻找⼆段性:

任取⼀个点 i ,与下⼀个点 i + 1 ,会有如下两种情况: • arr[i] > arr[i + 1] :此时「左侧区域」⼀定会存在⼭峰(因为最左侧是负⽆穷),那么我们可以去左侧去寻找结果; • arr[i] < arr[i + 1] :此时「右侧区域」⼀定会存在⼭峰(因为最右侧是负⽆穷),那么我们可以去右侧去寻找结果。 当我们找到「⼆段性」的时候,就可以尝试⽤「⼆分查找」算法来解决问题。 3、算法代码
class Solution {
public:
    int findPeakElement(vector& nums) 
    {
        vector ret;
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left+1)/2;
            if(nums[mid]>nums[mid-1]) left=mid;
            else right=mid-1;
        }
        return left;
    }
};

4、6 寻找旋转排序数组中的最⼩值

153. 寻找旋转排序数组中的最小值 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第9张

2、算法思路

题⽬中的数组规则如下图所示:

算法(3)——二分查找,第10张

其中 C 点就是我们要求的点。 ⼆分的本质:找到⼀个判断标准,使得查找区间能够⼀分为⼆。 通过图像我们可以发现, [A , B] 区间内的点都是严格⼤于 D 点的值的, C 点的值是严格⼩于 D 点的值的。但是当 [C , D] 区间只有⼀个元素的时候, C 点的值是可能等于 D 点的值的。 因此,初始化左右两个指针 left , right :然后根据 mid 的落点,我们可以这样划分下⼀次查询的区间: ▪ 当 mid 在 [A , B] 区间的时候,也就是 mid 位置的值严格⼤于 D 点的值,下⼀次查询区间在 [mid + 1 , right] 上; ▪ 当 mid 在 [C , D] 区间的时候,也就是 mid 位置的值严格⼩于等于 D 点的值,下次查询区间在 [left , mid] 上。 当区间⻓度变成 1 的时候,就是我们要找的结果。 3、算法代码 
class Solution {
public:
    int findMin(vector& nums) 
    {
        int tmp=nums[nums.size()-1];
        int left=0,right=nums.size()-1;
        while(right>left)
        {
            int mid=left+(right-left)/2;
            if(nums[mid]>tmp) left=mid+1;
            else right=mid;
        }
        return nums[left];
    }
};

4、7 0~n-1缺失的数字

LCR 173. 点名 - 力扣(LeetCode)

1、题目描述

算法(3)——二分查找,第11张

2、算法思路

关于这道题中,时间复杂度为 O(N) 的解法有很多种,⽽且也是⽐较好想的,这⾥就不再赘述。 本题只讲解⼀个最优的⼆分法,来解决这个问题。 在这个升序的数组中,我们发现: ▪ 在第⼀个缺失位置的左边,数组内的元素都是与数组的下标相等的; ▪ 在第⼀个缺失位置的右边,数组内的元素与数组下标是不相等的。 因此,我们可以利⽤这个「⼆段性」,来使⽤「⼆分查找」算法。 3、算法代码
class Solution {
public:
    int takeAttendance(vector& records) 
    {
        int left=0,right=records.size()-1,k=0;
        while(right>left)
        {
            int mid = left+(right-left)/2;
            if(records[mid]!=mid) right=mid;
            else left=mid+1;
        }
        return left==records[left]?left+1:left;
    }

网友评论