上海古都建筑设计集团,上海办公室装修设计公司,上海装修公司高质量的内容分享社区,上海装修公司我们不是内容生产者,我们只是上海办公室装修设计公司内容的搬运工平台

JoyRL Actor-Critic算法

guduadmin231月前

策略梯度算法的缺点

这里策略梯度算法特指蒙特卡洛策略梯度算法,即 REINFORCE 算法。 相比于 DQN 之类的基于价值的算法,策略梯度算法有以下优点。

  • 适配连续动作空间。在将策略函数设计的时候我们已经展开过,这里不再赘述。
  • 适配随机策略。由于策略梯度算法是基于策略函数的,因此可以适配随机策略,而基于价值的算法则需要一个确定的策略。此外其计算出来的策略梯度是无偏的,而基于价值的算法则是有偏的。

     但同样的,策略梯度算法也有其缺点。

    • 采样效率低。由于使用的是蒙特卡洛估计,与基于价值算法的时序差分估计相比其采样速度必然是要慢很多的,这个问题在前面相关章节中也提到过。
    • 高方差。虽然跟基于价值的算法一样都会导致高方差,但是策略梯度算法通常是在估计梯度时蒙特卡洛采样引起的高方差,这样的方差甚至比基于价值的算法还要高。
    • 收敛性差。容易陷入局部最优,策略梯度方法并不保证全局最优解,因为它们可能会陷入局部最优点。策略空间可能非常复杂,存在多个局部最优点,因此算法可能会在局部最优点附近停滞。
    • 难以处理高维离散动作空间:对于离散动作空间,采样的效率可能会受到限制,因为对每个动作的采样都需要计算一次策略。当动作空间非常大时,这可能会导致计算成本的急剧增加。

      结合了策略梯度和值函数的 Actor-Critic 算法则能同时兼顾两者的优点,并且甚至能缓解两种方法都很难解决的高方差问题。

      Q:为什么各自都有高方差的问题,结合了之后反而缓解了这个问题呢?

      A:策略梯度算法是因为直接对策略参数化,相当于既要利用策略去与环境交互采样,又要利用采样去估计策略梯度,而基于价值的算法也是需要与环境交互采样来估计值函数的,因此也会有高方差的问题。

       而结合之后呢,Actor 部分还是负责估计策略梯度和采样,但 Critic 即原来的值函数部分就不需要采样而只负责估计值函数了,并且由于它估计的值函数指的是策略函数的值,相当于带来了一个更稳定的估计,来指导 Actor 的更新,反而能够缓解策略梯度估计带来的方差。

      Q Actor-Critic算法

      JoyRL Actor-Critic算法,第1张

      如图 10.1 所示,我们通常将 Actor 和 Critic 分别用两个模块来表示,即图中的策略函数( Policy )和价值函数( Value Function )。Actor与环境交互采样,然后将采样的轨迹输入 Critic 网络,Critic 网络估计出当前状态-动作对的价值,然后再将这个价值作为 Actor 网络的梯度更新的依据,这也是所有 Actor-Critic 算法的基本通用架构

      JoyRL Actor-Critic算法,第2张

      A2C与A3C算法

      A2C

      JoyRL Actor-Critic算法,第3张

      JoyRL Actor-Critic算法,第4张

      JoyRL Actor-Critic算法,第5张

      A3C

      JoyRL Actor-Critic算法,第6张

      广义优势估计

      未完待续

网友评论

搜索
最新文章
热门文章
热门标签
 
 梦见大海是胎梦吗  梦见过年家里来了很多客人  2013年属什么生肖