0、环境信息
本文采用阿里云maxcompute的spark环境为基础进行的,搭建本地spark环境参考搭建Windows开发环境_云原生大数据计算服务 MaxCompute-阿里云帮助中心
版本spark 2.4.5,maven版本大于3.8.4
①配置pom依赖 详见2-1
②添加运行jar包
③添加配置信息
odps.project.name= odps.access.id= odps.access.key= odps.end.point=
1、数据准备
create TABLE dwd_sl_user_ids(
user_name STRING COMMENT '用户'
,user_id STRING COMMENT '用户id'
,device_id STRING COMMENT '设备号'
,id_card STRING COMMENT '身份证号'
,phone STRING COMMENT '电话号'
,pay_id STRING COMMENT '支付账号'
,ssoid STRING COMMENT 'APPID'
) PARTITIONED BY (
ds BIGINT
)
;
INSERT OVERWRITE TABLE dwd_sl_user_ids PARTITION(ds=20230818)
VALUES
('大法_官网','1','device_a','130826','185133','zhi1111','U130311')
,('大神_官网','2','device_b','220317','165133','zhi2222','')
,('耀总_官网','3','','310322','133890','zhi3333','U120311')
,('大法_app','1','device_x','130826','','zhi1111','')
,('大神_app','2','device_b','220317','165133','','')
,('耀总_app','','','','133890','zhi333','U120311')
,('大法_小程序','','device_x','130826','','','U130311')
,('大神_小程序','2','device_b','220317','165133','','U140888')
,('耀总_小程序','','','310322','133890','','U120311')
;
结果表
create TABLE itsl_dev.dwd_patient_oneid_info_df(
oneid STRING COMMENT '生成的ONEID'
,id STRING COMMENT '用户的各类id'
,id_hashcode STRING COMMENT '用户各类ID的id_hashcode'
,guid STRING COMMENT '聚合的guid'
,guid_hashcode STRING COMMENT '聚合的guid_hashcode'
)PARTITIONED BY (
ds BIGINT
);
2、代码准备
①pom.xml
4.0.0 com.gwm graph1.0-SNAPSHOT graph http://www.example.com UTF-8 1.8 1.8 2.3.0 1.8 3.3.8-public 2.11.8 2.11 junit junit4.11 test org.apache.spark spark-sql_2.11${spark.version} org.apache.spark spark-core_2.11${spark.version} org.apache.spark spark-graphx_2.11${spark.version} com.thoughtworks.paranamer paranamer2.8 org.apache.hadoop hadoop-common2.6.5 com.aliyun.odps cupid-sdk${cupid.sdk.version} provided com.aliyun.odps odps-spark-datasource_${scala.binary.version}${cupid.sdk.version} provided com.alibaba fastjson1.2.73 commons-codec commons-codec1.13 commons-lang commons-lang2.6 org.apache.maven.plugins maven-assembly-plugin3.1.1 com.gwm.OdpsGraphx jar-with-dependencies make-assembly package single org.scala-tools maven-scala-plugin2.15.2 compile testCompile
②代码
package com.gwm import java.math.BigInteger import java.text.SimpleDateFormat import java.util.Calendar import org.apache.commons.codec.digest.DigestUtils import org.apache.spark.SparkConf import org.apache.spark.graphx.{Edge, Graph} import org.apache.spark.sql.{DataFrame, SaveMode, SparkSession} import org.spark_project.jetty.util.StringUtil import scala.collection.mutable.ListBuffer /** * @author yangyingchun * @date 2023/8/18 10:32 * @version 1.0 */ object OneID { val sparkConf = (new SparkConf).setAppName("OdpsGraph").setMaster("local[1]") sparkConf.set("spark.hadoop.odps.access.id", "your's access.id ") sparkConf.set("spark.hadoop.odps.access.key", "your's access.key") sparkConf.set("spark.hadoop.odps.end.point", "your's end.point") sparkConf.set("spark.hadoop.odps.project.name", "your's project.name") sparkConf.set("spark.sql.catalogImplementation", "hive") //in-memory 2.4.5以上hive val spark = SparkSession .builder .appName("Oneid") .master("local[1]") .config("spark.sql.broadcastTimeout", 1200L) .config("spark.sql.crossJoin.enabled", true) .config("odps.exec.dynamic.partition.mode", "nonstrict") .config(sparkConf) .getOrCreate val sc = spark.sparkContext def main(args: Array[String]): Unit = { val bizdate=args(0) val c = Calendar.getInstance val format = new SimpleDateFormat("yyyyMMdd") c.setTime(format.parse(bizdate)) c.add(Calendar.DATE, -1) val bizlastdate = format.format(c.getTime) println(s" 时间参数 ${bizdate} ${bizlastdate}") // dwd_sl_user_ids 就是我们用户的各个ID ,也就是我们的数据源 // 获取字段,这样我们就可以扩展新的ID 字段,但是不用更新代码 val columns = spark.sql( s""" |select | * |from | itsl.dwd_sl_user_ids |where | ds='${bizdate}' |limit | 1 |""".stripMargin) .schema.fields.map(f => f.name).filterNot(e=>e.equals("ds")).toList println("字段信息=>"+columns) // 获取数据 val dataFrame = spark.sql( s""" |select | ${columns.mkString(",")} |from | itsl.dwd_sl_user_ids |where | ds='${bizdate}' |""".stripMargin ) // 数据准备 val data = dataFrame.rdd.map(row => { val list = new ListBuffer[String]() for (column <- columns) { val value = row.getAs[String](column) list.append(value) } list.toList }) import spark.implicits._ // 顶点集合 val veritx= data.flatMap(list => { for (i <- 0 until columns.length if StringUtil.isNotBlank(list(i)) && (!"null".equals(list(i)))) yield (new BigInteger(DigestUtils.md5Hex(list(i)),16).longValue, list(i)) }).distinct val veritxDF=veritx.toDF("id_hashcode","id") veritxDF.createOrReplaceTempView("veritx") // 生成边的集合 val edges = data.flatMap(list => { for (i <- 0 to list.length - 2 if StringUtil.isNotBlank(list(i)) && (!"null".equals(list(i))) ; j <- i + 1 to list.length - 1 if StringUtil.isNotBlank(list(j)) && (!"null".equals(list(j)))) yield Edge(new BigInteger(DigestUtils.md5Hex(list(i)),16).longValue,new BigInteger(DigestUtils.md5Hex(list(j)),16).longValue, "") }).distinct // 开始使用点集合与边集合进行图计算训练 val graph = Graph(veritx, edges) //计算每个顶点的连接组件成员身份,并返回具有该顶点的图值,该值包含包含该顶点的连接组件中的最低顶点id,迭代次数 控制迭代次数 //todo.1 连通分量 无向图 //输出每个连通子图顶点对应的最小顶点编号 // 应用场景♥♥♥ // 话单分析人物关系 // 企业信息族谱 var vertices: DataFrame = ConnectedComponents.run(graph, 2).vertices.toDF("id_hashcode", "guid_hashcode") //todo.2 StronglyConnectedComponents 强连通分量 有向图 //输出每个【强】连通子图顶点对应的最小顶点编号 // 应用场景♥♥♥ // 话单分析人物关系 // 企业信息族谱 // var vertices: DataFrame = StronglyConnectedComponents.run(graph, 2).vertices.toDF("id_hashcode", "guid_hashcode") //todo.3 LabelPropagation无向图标签传播 LPA //从某个顶点触发,所有能够到达的顶点数量最多的,集中在一起成为一个社区,该顶点成为社区起点。 //标签传播算法返回每个顶点对应的社区起点 // 应用场景♥♥♥ // 游戏通过连天记录在晚间中找代理 // 信息传播源头推断:以消息为主题,查看消息传播的始作俑者 // var vertices: DataFrame = LabelPropagation.run(graph, 2).vertices.toDF("id_hashcode", "guid_hashcode") //todo.4 TriangleCount函数 //三角计数 //三角形:完全图(热议两点有边) //三角形计算:一条边的两个顶点有相同邻点,则单个点构成三角形 //返回经过每个顶点的三角形数量 // 应用场景♥♥♥ // 社群发现:社群耦合关系紧密程度(一个人的社交网络中三角函数越多说明社交关系越稳定) // var vertices: DataFrame = TriangleCount.run(graph) // .vertices.toDF("id_hashcode", "guid_hashcode") //todo.5 连通节点 // val connectedGraph = graph.connectedComponents() // val vertices = connectedGraph.vertices.toDF("id_hashcode","guid_hashcode") vertices.createOrReplaceTempView("to_graph") // 加载昨日的oneid 数据 (oneid,id,id_hashcode) val ye_oneid = spark.sql( s""" |select | oneid,id,id_hashcode |from | itsl.dwd_patient_oneid_info_df |where | ds='${bizlastdate}' |""".stripMargin ) ye_oneid.createOrReplaceTempView("ye_oneid") // 关联获取 已经存在的 oneid,这里的min 函数就是我们说的oneid 的选择问题 val exists_oneid=spark.sql( """ |select | a.guid_hashcode,min(b.oneid) as oneid |from | to_graph a |inner join | ye_oneid b |on | a.id_hashcode=b.id_hashcode |group by | a.guid_hashcode |""".stripMargin ) exists_oneid.createOrReplaceTempView("exists_oneid") var result: DataFrame = spark.sql( s""" |select | nvl(b.oneid,md5(cast(a.guid_hashcode as string))) as oneid,c.id,a.id_hashcode,d.id as guid,a.guid_hashcode,${bizdate} as ds |from | to_graph a |left join | exists_oneid b |on | a.guid_hashcode=b.guid_hashcode |left join | veritx c |on | a.id_hashcode=c.id_hashcode |left join | veritx d |on | a.guid_hashcode=d.id_hashcode |""".stripMargin ) // 不存在则生成 存在则取已有的 这里nvl 就是oneid 的更新逻辑,存在则获取 不存在则生成 var resultFrame: DataFrame = result.toDF() resultFrame.show() resultFrame.write.mode(SaveMode.Append).partitionBy("ds").saveAsTable("dwd_patient_oneid_info_df") sc.stop } }
③ 本地运行必须增加resources信息
3、问题解决
①Exception in thread "main" java.lang.IllegalArgumentException: Error while instantiating 'org.apache.spark.sql.hive.HiveSessionStateBuilder':
Caused by: java.lang.ClassNotFoundException: org.apache.spark.sql.hive.HiveSessionStateBuilder
缺少Hive相关依赖,增加
org.apache.spark spark-hive_2.11${spark.version}
但其实针对odps不需要加此依赖,只需要按0步配置好环境即可
②Exception in thread "main" org.apache.spark.sql.AnalysisException: Table or view not found: `itsl`.`dwd_sl_user_ids`; line 5 pos 3;
需要按照 0 步中按照要求完成环境准备
③Exception in thread "main" org.apache.spark.sql.AnalysisException: The format of the existing table itsl.dwd_patient_oneid_info_df is `OdpsTableProvider`. It doesn't match the specified format `ParquetFileFormat`.;
解决:ALTER TABLE dwd_patient_oneid_info_df SET FILEFORMAT PARQUET;
本地读写被禁用 需要上线解决
4、打包上传
①需取消
.master("local[1]")
②取消maven依赖
③odps.conf不能打包,建临时文件不放在resources下
本地测试时放resources下
参考用户画像之ID-Mapping_id mapping_大数据00的博客-CSDN博客
上线报
org.apache.spark.sql.AnalysisException: Table or view not found: `itsl`.`dwd_sl_user_ids`; line 5 pos 3;
原因是本节③
5、运行及结果
结果
oneid id id_hashcode guid guid_hashcode ds
598e7008ffc3c6adeebd4d619e2368f3 耀总_app 8972546956853102969 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 310322 1464684454693316922 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 zhi333 6097391781232248718 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 3 2895972726640982771 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 耀总_小程序 -6210536828479319643 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 zhi3333 -2388340305120644671 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 133890 -9124021106546307510 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 耀总_官网 -9059665468531982172 133890 -9124021106546307510 20230818
598e7008ffc3c6adeebd4d619e2368f3 U120311 -2948409726589830290 133890 -9124021106546307510 20230818
d39364f7fb05a0729646a766d6d43340 U140888 -8956123177900303496 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 大神_官网 7742134357614280661 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 220317 4342975012645585979 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 device_b 934146606527688393 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 165133 -8678359668161914326 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 大神_app 3787345307522484927 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 大神_小程序 8356079890110865354 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 2 8000222017881409068 U140888 -8956123177900303496 20230818
d39364f7fb05a0729646a766d6d43340 zhi2222 8743693657758842828 U140888 -8956123177900303496 20230818
34330e92b91e164549cf750e428ba9cd 130826 -5006751273669536424 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd device_a -3383445179222035358 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd 1 994258241967195291 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd device_x 3848069073815866650 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd zhi1111 7020506831794259850 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd 185133 -2272106561927942561 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd 大法_app -7101862661925406891 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd U130311 5694117693724929174 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd 大法_官网 -4291733115832359573 大法_app -7101862661925406891 20230818
34330e92b91e164549cf750e428ba9cd 大法_小程序 -5714002662175910850 大法_app -7101862661925406891 20230818
6、思考
如果联通图是循环的怎么处理呢?A是B的朋友,B是C的朋友,C是A的朋友
猜你喜欢
网友评论
- 搜索
- 最新文章
- 热门文章