上海古都建筑设计集团,上海办公室装修设计公司,上海装修公司高质量的内容分享社区,上海装修公司我们不是内容生产者,我们只是上海办公室装修设计公司内容的搬运工平台

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?

guduadmin201月前

什么是网格搜索?

网格搜索是一种参数调优的方法,它可以帮助找到最佳的模型参数。在网格搜索中,我们先指定参数的候选值范围,然后枚举所有可能的参数组合,计算每个模型的性能指标(比如准确率、精确率等)。最后,选择性能指标最优的那个参数组合作为最终的模型参数。网格搜索的名称来源于我们将参数的候选值范围表示为一个二维的参数网格。

scikit-learn GridSearchCV类介绍

API Reference — scikit-learn 1.4.0 documentation

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第1张

sklearn.model_selection.GridSearchCV — scikit-learn 1.4.0 documentation 

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第2张

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第3张

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第4张

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第5张 [Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第6张

重要参数说明:

  • estimator:要优化的模型对象。
  • param_grid:指定参数的候选值范围,可以是一个字典或列表。
  • scoring:性能评估方法。
  • n_jobs:并行运行的作业数。
  • refit:是否在找到最佳参数后在整个数据集上重新拟合估计器。
  • cv:交叉验证生成器或可迭代的产生训练/验证集的拆分器。
  • verbose:详细程度。
  • pre_dispatch:控制在并行执行期间调度的作业数。当调度的作业比CPU处理的作业多时,减少这个数字有助于避免内存消耗的爆炸式增长。
  • error_score:如果估算器拟合中出现错误,则分配给分数的值。。
  • return_train_score:是否返回训练评分。

    重要属性说明:

    • best_estimator_:返回在交叉验证中选择的最佳估计器。
    • best_params_:返回在交叉验证中选择的最佳参数组合。
    • best_score_:返回在交叉验证中选择的最佳评分。
    • cv_results_:返回一个字典,其中包含网格搜索期间计算出的所有性能指标和参数设置的详细信息。
    • scorer_:返回用于评分的评估器。
    • n_splits_:返回交叉验证折叠数。

      这些属性可以提供有关在网格搜索期间发生的事件和结果的详细信息,包括最佳模型、最佳参数和最佳评分等。您可以根据需要使用这些属性来进一步分析优化的结果。

      scikit-learn GridSearchCV类使用案例

      # 导入依赖包
      from sklearn.datasets import load_breast_cancer
      from sklearn.ensemble import RandomForestClassifier
      from sklearn.model_selection import GridSearchCV
      from sklearn.model_selection import cross_val_score
      import matplotlib.pyplot as plt
      import pandas as pd
      import numpy as np
      
      # 导入乳腺癌数据集,探索数据
      data = load_breast_cancer()
      print(data.data.shape) # 可以看到,乳腺癌数据集有569条记录,30个特征,单看维度虽然不算太高,但是样本量非常少。过拟合的情况可能存在。
      print(data.data[0:5])
      print(data.target.shape)
      print(data.target[0:5])
      print(data.feature_names)
      print(data.target_names)

      [Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第7张

      # 进行一次简单的建模,看看模型本身在数据集上的效果
      rfc = RandomForestClassifier(n_estimators=10, random_state=90)
      score_pre = cross_val_score(rfc, data.data, data.target,cv=10).mean()
      score_pre
      # 这里可以看到,随机森林在乳腺癌数据上的表现本就还不错,在现实数据集上,基本上不可能什么都不调就看到95%以上的准确率

      [Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第8张

      # 开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_depth
      #调整max_depth
      param_grid = {'max_depth':np.arange(1, 20, 1)}
      # 一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
      # 但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
      #   更应该画出学习曲线,来观察深度对模型的影响
      rfc = RandomForestClassifier(n_estimators=73
                                   ,random_state=90
                                 )
      GS = GridSearchCV(rfc, param_grid, cv=10)
      GS.fit(data.data,data.target)
      print(GS.best_params_)
      print(GS.best_score_)
      plt.figure(figsize=[20,5])
      plt.plot(range(1,20), GS.cv_results_['mean_test_score'])
      plt.ylabel('score')
      plt.xlabel('max_depth')
      plt.xticks(range(1,21))
      plt.show()

      [Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?,第9张

      更多详细信息,可以阅读:[Python] 什么是集成算法,什么是随机森林?随机森林分类器(RandomForestClassifier)及其使用案例-CSDN博客

      的“案例二:乳腺癌数据集进行随机森林调参”。

网友评论

搜索
最新文章
热门文章
热门标签
 
 梦到买鞋子是什么意思  出生时辰属虎是什么时辰  女人梦见螃蟹什么预兆