题目描述
"吃货"和"馋嘴"两人到披萨店点了一份铁盘(圆形)披萨,并嘱咐店员将披萨按放射状切成大小相同的偶数个小块。但是粗心的服务员将披萨切成了每块大小都完全不同奇数块,且肉眼能分辨出大小。
由于两人都想吃到最多的披萨,他们商量了一个他们认为公平的分法:从"吃货"开始,轮流取披萨。除了第一块披萨可以任意选取外,其他都必须从缺口开始选。
他俩选披萨的思路不同。"馋嘴"每次都会选最大块的披萨,而且"吃货"知道"馋嘴"的想法。
已知披萨小块的数量以及每块的大小,求"吃货"能分得的最大的披萨大小的总和。
输入描述
第 1 行为一个正整数奇数 N,表示披萨小块数量。
- 3 ≤ N < 500
接下来的第 2 行到第 N + 1 行(共 N 行),每行为一个正整数,表示第 i 块披萨的大小
- 1 ≤ i ≤ N
披萨小块从某一块开始,按照一个方向次序顺序编号为 1 ~ N
- 每块披萨的大小范围为 [1, 2147483647]
输出描述
"吃货"能分得到的最大的披萨大小的总和。
用例
猜你喜欢
网友评论
- 搜索
- 最新文章
- 热门文章